Fucoxanthin, an allenic carotenoid, can be isolated from edible brown seaweeds. Recent studies have reported that fucoxanthin has many physiological functions and biological properties, such as antiobesity, antitumor, antidiabetes, antioxidant, anti-inflammatory, and hepatoprotective activities, as well as cardiovascular and cerebrovascular protective effects. Therefore, fucoxanthin can be used as both medicinal and nutritional ingredient to prevent and treat chronic diseases. Although fucoxanthin possesses many medicinal ingredient and nutritional qualities, studies indicated that its structure was unstable. In this paper, we consulted the current documents and reviewed structural properties and factors affecting the stability of fucoxanthin. We also reported the metabolism, safety, pharmacological activities, and the methods of improving the bioavailability of fucoxanthin. Based on these studies providing essential background knowledge, fucoxanthin can be developed into marine drugs and nutritional products.
As important genome editing tools, CRISPR/Cas systems, especially those based on type II Cas9 and type V Cas12a, are widely used in genetic and metabolic engineering of bacteria. However, the intrinsic toxicity of Cas9 and Cas12amediated CRISPR/Cas tools can lead to cell death in some strains, which led to the development of endogenous type I and III CRISPR/Cas systems. However, these systems are hindered by complicated development and limited applications. Thus, further development and optimization of CRISPR/Cas systems is needed. Here, we briefly summarize the mechanisms of different types of CRISPR/Cas systems as genetic manipulation tools and compare their features to provide a reference for selecting different CRISPR/Cas tools. Then, we show the use of CRISPR/Cas technology for bacterial strain evolution and metabolic engineering, including genome editing, gene expression regulation and the base editor tool. Finally, we offer a view of future directions for bacterial CRISPR/Cas technology.
Linear iodoniums are widely used as arylating reagents. However, cyclic diaryl idodoniums are ignored despite their potential to initiate dual arylations, atom and step economically. In our current work, a three-component cascade reaction of cyclic diaryliodoniums, sodium azide, and alkynes has been successfully achieved under mild conditions, catalyzed by cheap copper species. The regioselectivity associated with unsymmetrical iodoniums was enhanced by installing two methyls ortho and para to the I(III) center. The reaction enables a rapid access to a variety of complex molecules, triazolophenanthridine derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.