Ancient tree community surveys have great scientific value to the study of biological resources, plant distribution, environmental change, genetic characteristics of species, and historical and cultural heritage. The largest ancient pear tree communities in China, which are rare, are located in the Daxing District of Beijing. However, the environmental conditions are tough, and the distribution is relatively dispersed. Therefore, a low-cost, high-efficiency, and high-precision measuring system is urgently needed to complete the survey of ancient tree communities. By unmanned aerial vehicle (UAV) photogrammetric program research, ancient tree information extraction method research, and ancient tree diameter at breast height (DBH) and age prediction model research, the proposed method can realize the measurement of tree height, crown width, and prediction of DBH and tree age with low cost, high efficiency, and high precision. Through experiments and analysis, the root mean square error (RMSE) of the tree height measurement was 0.1814 m, the RMSE of the crown width measurement was 0.3292 m, the RMSE of the DBH prediction was 3.0039 cm, and the RMSE of the tree age prediction was 4.3753 years, which could meet the needs of ancient tree survey of the Daxing District Gardening and Greening Bureau. Therefore, a UAV photogrammetric measurement system proved to be capable when applied in the survey of ancient tree communities and even in partial forest inventories.
Side plate offset is one of the grate system faults. If it is not dealt with in time, some accidents will occur and economic losses will be made. Aiming at the problems like time-consuming, labour-wasting, and low intelligent by the side plate offset detection method manually, an autoside plate offset detection method is proposed, based on You Only Look Once version 4 (YOLOv4). Two cameras were fixed to collect the image information of the grate trolley’s side plate. With reference to the grate trolley’s operation, the offset judgment rules were set. YOLOv4 object detection algorithm was used to detect the side plate and trolley’s chassis frame in video frame images. A baseline was set according to the position information of the trolley’s chassis frame output by detection, and then, the position intervals between side plates and the baseline could be determined by calculation. According to the judgment rules, the scheme in this paper could detect the offset fault of the trolley’s side plate timely, and an alarm would be made automatically when faults are detected. Our video images of the trolley’s side plate were collected and sorted in Baogang Group sintering plant for testing. In this experiment, no error judgment was made, and the average detection and judgment time was 0.024 s. In this paper, rather than manually, the real-time automatic detection was realized to detect the offset fault of the trolley’s side plate so as to provide a new solution for offset detection of the grate trolley’s side plate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.