This work studied cycle stability of dual-phase Lithium Titanate (LTO)/TiO2 nanowires as a lithium battery anode. Dual-phase LTO/TiO2 nanowires were successfully synthesized by hydrothermal method at various times lithiation of 10, 24, and 48 h at 80 °C. SEM images show that the morphology of dual-phase LTO/TiO2 is nanowires with a size around 100-200 nm in diameter. The XRD analysis result indicates nanowires main components are anatase (TiO2) and spinel Li4Ti5O12. The first discharge specific capacity of LTO/TiO2-10, LTO/TiO2-24, and LTO/TiO2-48 was 181.68, 175.29, and 154.30 mAh/g, respectively. After the rate capacity testing, the LTO/TiO2-10, LTO/TiO2-24, and LTO/TiO2-48 have maintained 161.25, 165.25, and 152.53 mAh/g separately. The retentions for each sample were 86.71, 92.86, and 89.79 %. Based on the results of electrochemical performance, increased LTO content helped increase samples cycle stability. However, the prolonged lithiation time also produced impurities, which reduced the cycle stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.