Solamargine, an active ingredient of Solanum nigrum, has been previously revealed to inhibit the proliferation of cancer cells. However, the effect of solamargine on human cholangiocarcinoma cells and the underlying molecular mechanism remain unknown. In the present study, the molecular mechanism underlying the anti-cancer effect of solamargine was assessed in human cholangiocarcinoma QBC939 cells. The results of the present study revealed that solamargine inhibited the viability of QBC939 cells in a dose-dependent manner. Furthermore, solamargine significantly induced the apoptosis of QBC939 cells and altered the mitochondrial membrane potential of cells. Quantitative polymerase chain reaction analysis revealed that solamargine decreased the mRNA level of B-cell lymphoma-2 (Bcl-2), Bcl-extra-large and X-linked inhibitor of apoptosis protein but increased the mRNA level of Bcl-2-associated X protein (Bax). In addition, western blot analysis demonstrated that solamargine inhibited the protein expression of Bcl-2 and poly ADP ribose polymerase (PARP), and promoted the protein expression of Bax, cleaved PARP, caspase 3, cleaved caspase 3 and caspase 7. Therefore, the results of the present study revealed that solamargine may induce apoptosis via the mitochondrial pathway and alter the level of apoptosis-associated proteins in human cholangiocarcinoma QBC939 cells. This in vitro study demonstrated that solamargine may be an effective chemotherapeutic agent against cholangiocarcinoma in clinical practice.
Background: Costunolide, a sesquiterpene lactone extracted from Radix Aucklandiae, has the activity against multiple cancers. However, the effect of costunolide on gastric cancer (GC) have remained to be ambiguous. In this study, we investigated the underlying mechanisms of apoptosis induced by costunolide in human gastric adenocarcinoma BGC-823 cells in vitro and in vivo. Methods: The viability of BGC-823 cells was detected by MTT assay. The apoptosis and mitochondrial membrane potential (ΔΨm) of BGC-823 cells induced by costunolide were analyzed by flow cytometry. The inhibiton of costunolide on human gastric adenocarcinoma was estimated in xenografts in nude mice. Apoptosis related proteins and genes were detected by Western blot and Q-PCR. Results: Costunolide inhibited the viability of BGC-823 cells in a time and concentration dependent manner. Costunolide induced the apoptosis and lowered the ΔΨm of BGC-823 cells significantly. Costunolide increased the expression of Bax, cleaved caspase 9, cleaved caspase 7, cleaved caspase 3 and cleaved poly ADP ribose polymerase (PARP) proteins and decreased the expression of Bcl-2, pro-caspase 9, pro-caspase 7, pro-caspase 3 and PARP proteins. Costunolide upregulated the expression of puma, Bak1 and Bax mRNA and downregulated the expression of Bcl-2 mRNA. In addition, we demonstrated that costunolide inhibited the growth and induced apoptosis of BGC-823 cells xenografted in athymic nude mice. Costunolide increased the expression of cleaved caspase 9, cleaved caspase 3 and Bax proteins and decreased the expression of Bcl-2 protein in xenografted tumor. Costunolide upregulated the expression of puma and Bax mRNA and decreased the expression of Bcl-2 mRNA in xenografted tumor. Conclusions: Collectively, our results suggested that costunolide induced mitochondria-mediated apoptosis in human gastric adenocarcinoma BGC-823 cells and could be the candidate drug against GC in clinical practice.
Jianpiyiqi formula is a Traditional Chinese Medicine (TCM) prescription and is used for the clinical treatment of patients with chronic atrophic gastritis (CAG). The aim of the present study was to examine the underlying mechanisms of Jianpiyiqi formula treatment for CAG via the Wnt/β-catenin signaling pathway. The high-performance liquid chromatography (HPLC) chromatogram of Jianpiyiqi formula was constructed. A CAG rat model induced by N-methyl-N'-nitro-N-nitrosoguanidine and ranitidine was established. The body weight and food intake of the rats was recorded and rat gastric morphology was visually examined. Pathological analysis of rat gastric tissue was also performed. The levels of gastrin (GAS), pepsin (PP), somatostatin (SS) and prostaglandin E 2 (PGE 2 ) in rat serum were detected using ELISAs. The expression levels of proteins and genes associated with the Wnt/β-catenin signaling pathway were measured via immunohistochemistry and reverse transcription-quantitative PCR. The HPLC chromatogram of Jianpiyiqi formula was determined and as active components, liquiritin and hesperidin were identified from the chromatogram. Compared with the blank group, the body weight and feed intake of the rats were decreased, and gastric mucosal atrophy and inflammation appeared in the model group. Treatment with Jianpiyiqi formula increased the body weight and feed intake of the rats, as well as relieved the gastric atrophy and inflammation. The contents of GAS, PP, SS and PGE 2 were significantly reduced in the model group compared with the blank group. Jianpiyiqi formula significantly increased GAS, PP, SS and PGE 2 levels in serum of rats with CAG. In the model group, Wnt1, β-catenin and cyclin D1 protein expression levels were increased, and glycogen synthase kinase-3β (GSK-3β) protein expression levels were decreased. Jianpiyiqi formula decreased the protein expression levels of Wnt1, β-catenin and cyclin D1 and increased the protein expression levels of GSK-3β. Compared with the blank group, the mRNA expression levels of Wnt1, Wnt5a, β-catenin, cyclin D1 and MMP7 were upregulated, and the mRNA expression levels of GSK-3β were downregulated in the model group. Treatment with Jianpiyiqi formula downregulated the mRNA expression levels of Wnt1, Wnt5a, β-catenin, cyclin D1 and MMP7 and upregulated the mRNA expression levels of GSK-3β. All of the experimental results indicated that Jianpiyiqi formula exerted a therapeutic effect on rats with CAG and inhibited the activation of the Wnt/β-catenin signaling pathway. Thus, Jianpiyiqi formula, as an effective TCM prescription for treating patients with CAG, may be more widely used in the clinic.
Ulcerative colitis (UC) is an intestinal inflammatory disorder. Long non-coding RNAs (lncRNAs) are collectively involved in UC. This study is designed to explore the roles of lncRNA (small nucleolar RNA host gene 5) SNHG5 in UC. Gene or microRNA (miRNA) expression was detected using RT-qPCR and western blot, respectively. Cellular functions were analyzed by cell counting kit 8 (CCK8), 5-ethynyl-2 -deoxyuridine (EdU) assay, flow cytometry, and the terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL) assays. Lactate dehydrogenase (LDH) content was determined by a cell cytotoxicity assay. The interactions between miR-375 and SNHG5 or Janus kinase-2 (JAK2) were verified by a luciferase reporter assay. SNHG5 was up-regulated in intestinal mucosa tissues of UC patients as well as tumor necrosis factor alpha-treated (TNF-α-treated) young adult mouse colon (YAMC) cells. Downregulated SNHG5 promoted cell proliferation and inhibited apoptosis of YAMC cells. miR-375 was verified to be a target of SNHG5 and was suppressed by TNF-α treatment in YAMC cells. Overexpression of miR-375 restored YAMC cellular functions. Additionally, miR-375 targeted JAK2, which was up-regulated by TNF-α treated YAMC cells. Up-regulation of JAK2 induced the dysfunction of YAMC cells. Knockdown of SNHG5 promoted the proliferation and suppressed the apoptosis of YAMC cells via regulating miR-375/JAK2 axis. Therefore, knockdown of SNHG5 may be a promising therapy for UC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.