Winter irrigation is an effective means of salt leaching, but the long-term effect on salinity is unclear. In 2008–2019, three different soil types of farmlands were selected as the study area by drip irrigation under film mulch combined with periodic winter irrigation in the non-growth period. The salinity of 0–150 cm as well as the survival rate and yield of cotton in the non-growth and growth periods were monitored, respectively. The mass fraction of soil salt decreased rapidly under winter irrigation, and then, the salt content in each observation layer increased with years of cultivation. After 10 years of application, the soil salt content basically stabilized at a low level. In 2008, the salinity of the 0–150 cm observation layer of loamy clay, loam, and sandy loam varied within 6–60, 10–65, and 4–22 g·kg−1; after four winter irrigations in 2019, corresponding values dropped below 5.74, 3, and 4.76 g·kg−1, respectively. The salinity returns rate of the different observation layers all exceeded 40%. The desalination rate of the different soils after four winter irrigations all exceeded 63.52%. Cotton survival rate and yield in different soils were directly proportional to each other. After the second winter irrigation, the survival rates on the different soils all exceeded 60%. The results of this study can provide technical support for the sustainable development of different types of soil, farmers’ income increase, and salinization land improvement.
To explore the potential of smashing ridge tillage irrigation, it is necessary to investigate how smashing ridge tillage technology with mulched drip irrigation affects soil water, salinity, and cotton yield in saline fields. We conducted a two-year (2020–2021) field experiment to study the effects of different smashing ridge tillage depths on soil bulk density, moisture, salinity, dry matter production, yield, and its constituents (effective bolls, 100-bell weight). There were three smashing ridge tillage depths: A (20 cm), B (40 cm), and C (60 cm), with traditional tillage as the CT. The results showed that all of the smashing ridge tillage could reduce soil bulk density, improve the utilization and uptake of deep soil water during the rapid growth period, and reduce the soil salt content. Compared with the CT treatment, the average soil bulk density of the 0–60 cm soil layer in treatments A, B, and C in 2020 and 2021 decreased by 3.05%, 5.87%, 10.09%, and 1.65%, 4.48%, and 8.49%, respectively. The average soil water content in the 0–120 cm soil layer at the flowering and boll stage decreased by 3.68%, 6.28%, 9.04%, and 3.59%, 6.52%, and 9.98%, respectively; the soil salt content in the 0–120 cm soil layer at the boll opening stage decreased by 4.21%, 6.75%, 11.95%, and 5.47%, 24.25%, and 54.13%, respectively. Cotton dry matter production and yield tended to increase with an increasing depth of smash ridge tillage. Treatment C obtained the maximum dry matter production, seed cotton yield, effective bolls, and 100-boll weight. The dry matter production at the boll opening stage was significantly increased by 17.16% and 15.91%, and the yield was significantly increased by 65.24% and 84.14% in treatments C in 2020 and 2021, respectively, compared to CT. The smashing ridge tillage of 60 cm can optimize the structure of the soil tillage layer and also reduce soil salinity and increase yield, which is the suitable depth of smashing ridge tillage for saline cotton fields in the south of Xinjiang. The findings of the study can provide some theoretical basis and practical experience for the improvement of saline soils and sustainable agricultural development in South Xinjiang, China.
Collapsibility is an inherent characteristic of loess, which is often treated by adding industrial materials such as cement and lime in engineering, it seriously damages the reclamation performance of soil. Degradable calcium lignosulfonate (CLS) has a good prospect in balancing soil stabilization and environmental protection. Therefore, this paper evaluates the collapsibility and mechanical characteristics of CLS improved loess based on the collapsibility test, grey correlation analysis, and unconfined compressive strength test. The results show that when the content is 3%, the stabilization effect is most obvious, and the collapsibility coefficient can be reduced by more than 95%. The order of grey correlation degree of collapsibility on each index is moisture content, void ratio, dry density, and CLS content from large to small. The unconfined compressive strength increases rapidly in the first 14 days and then decreases with the content. When the content is too high, the strength of improved loess is lower than that of plain loess. Combined with SEM, microstructure parameters, and X-ray diffraction analysis, the carbonate minerals can play the role of filling pores and connecting soil particles, which reduces the grain size of mineral composition and the thickness of the electric double layer and makes the structure more compact. The research results have scientific significance and application value for the ecological modification research and engineering application of soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.