Recent years have witnessed significant advances in image deraining due to the kinds of effective image priors and deep learning models. As each deraining approach has individual settings (e.g., training and test datasets, evaluation criteria), how to fairly evaluate existing approaches comprehensively is not a trivial task. Although existing surveys aim to review of image deraining approaches comprehensively, few of them focus on providing unify evaluation settings to examine the deraining capability and practicality evaluation. In this paper, we provide a comprehensive review of existing image deraining method and provide a unify evaluation setting to evaluate the performance of image deraining methods. We construct a new high-quality benchmark named HQ-RAIN to further conduct extensive evaluation, consisting of 5,000 paired high-resolution synthetic images with higher harmony and realism. We also discuss the existing challenges and highlight several future research opportunities worth exploring. To facilitate the reproduction and tracking of the latest deraining technologies for general users, we build an online platform to provide the off-the-shelf toolkit, involving the large-scale performance evaluation. This online platform and the proposed new benchmark are publicly available and will be regularly updated at http://www.deraining.tech/.
Since rain streaks exhibit diverse geometric appearances and irregular overlapped phenomena, these complex characteristics challenge the design of an effective single image deraining model. To this end, rich local-global information representations are increasingly indispensable for better satisfying rain removal. In this paper, we propose a lightweight Hybrid CNN-Transformer Feature Fusion Network (dubbed as HCT-FFN) in a stage-by-stage progressive manner, which can harmonize these two architectures to help image restoration by leveraging their individual learning strengths. Specifically, we stack a sequence of the degradation-aware mixture of experts (DaMoE) modules in the CNN-based stage, where appropriate local experts adaptively enable the model to emphasize spatially-varying rain distribution features. As for the Transformer-based stage, a background-aware vision Transformer (BaViT) module is employed to complement spatially-long feature dependencies of images, so as to achieve global texture recovery while preserving the required structure. Considering the indeterminate knowledge discrepancy among CNN features and Transformer features, we introduce an interactive fusion branch at adjacent stages to further facilitate the reconstruction of high-quality deraining results. Extensive evaluations show the effectiveness and extensibility of our developed HCT-FFN. The source code is available at https://github.com/cschenxiang/HCT-FFN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.