The reliability of electrical components affects the stable operation of the power system. Electrical components inspection has long been important issues in the intelligent power system. The main problems of traditional recognition methods of electrical components are low detection accuracy and poor real-time performance, which are challenging to extract necessary features from the inspection images. This paper proposes a way to detect the electrical components in the Unmanned Aerial Vehicle (UAV) inspection image based on You Only Look Once (YOLO) V3 algorithm. Due to some of the inspection images are not clear, which result in the reduction of the available dataset. On this basis, we adopt Super-Resolution Convolutional Neural Network (SRCNN) to realize super-resolution reconstruction on the blurred image, which achieves the expansion of the dataset. We compare the performance of the proposed method with other popular recognition methods. The results of experiment verify the effectiveness of the proposed method, and the technique reaches high recognition accuracy, good robustness, and strong real-time performance for UAV power inspection system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.