Towards intelligent Human-Vehicle Interaction systems and innovative Human-Vehicle Interaction designs, in-vehicle drivers' physiological data has been explored as an essential data source. However, equipping multiple biosensors is considered the limited extent of user-friendliness and impractical during the driving procedure. The lack of a proper approach to access physiological data has hindered wider applications of advanced biosignal-driven designs in practice (e.g. monitoring systems and etc.). Hence, the demand for a user-friendly approach to measuring drivers' body statuses has become more intense.In this Work-In-Progress, we present Face2Multi-modal, an In-vehicle multi-modal Data Streams Predictors through facial expressions only. More specifically, we have explored the estimations of Heart Rate, Skin Conductance, and Vehicle Speed of the drivers. We believe Face2Multi-modal provides a user-friendly alternative to acquiring drivers' physiological status and vehicle status, which could serve as the building block for many current or future personalized Human-Vehicle Interaction designs. More details and updates about the project Face2Multi-modal is online at https://github.com/unnc-ucc/Face2Multimodal/. * Work was done during the summer research internship at User-Centric Computing Group † Work was done as a Research Affiliate to User-Centric Computing Group, University of Nottingham Ningbo China Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).
To improve the overall system utilization, Simultaneous Multi-Threading (SMT) has become a norm in clouds. Usually, Hardware threads are viewed and deployed directly as physical cores for attempts to improve resource utilization and system throughput. However, context switches in virtualized systems might incur severe resource waste, which further led to significant performance degradation. Worse, virtualized systems suffer from performance variations since the rescheduled vCPU may affect other hardware threads on the same physical core. In this paper, we perform an indepth experimental study about how existing system software techniques improves the utilization of SMT Processors in Clouds. Considering the default Linux hypervisor vanilla KVM as the baseline, we evaluated two update-to-date kernel patches IdlePoll and HaltPoll through the combination of 14 real-world workloads. Our results show that mitigating they could significantly mitigate the number of context switches, which further improves the overall system throughput and decreases its latency. Based on our findings, we summarize key lessons from the previous wisdom and then discuss promising directions to be explored in the future. CCS Concepts • Software and its engineering~Software organization and properties~Software system structures~Distributed systems organizing principles~Cloud computing
Towards a serendipitous recommender system with user-centred understanding, we have built CHESTNUT , an Information Theorybased Movie Recommender System, which introduced a more comprehensive understanding of the concept. Although off-line evaluations have already demonstrated that CHESTNUT has greatly improved serendipity performance, feedback on CHESTNUT from real-world users through online services are still unclear now. In order to evaluate how serendipitous results could be delivered by CHESTNUT , we consequently designed, organized and conducted large-scale user study, which involved 104 participants from 10 campuses in 3 countries. Our preliminary feedback has shown that, compared with mainstream collaborative filtering techniques, though CHESTNUT limited users' feelings of unexpectedness to some extent, it showed significant improvement in their feelings about certain metrics being both beneficial and interesting, which substantially increased users' experience of serendipity. Based on them, we have summarized three key takeaways, which would be beneficial for further designs and engineering of serendipitous recommender systems, from our perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.