Climate changes, especially increased temperatures, and precipitation changes, have significant impacts on vegetation phenology. However, the response of vegetation phenology to the extreme climate in the Loess Plateau in Northwest China remains poorly quantified. The research described here analyzed the spatial change in vegetation phenology and the response of vegetation phenology to climate change in the Loess Plateau from 2001 to 2018, using data from seven extreme climate indices based on the ridge regression method. The results showed that extreme climate indexes, TNn (yearly minimum value of the daily minimum temperature), TXx (yearly maximum value of the daily maximum temperature), and RX5day (yearly maximum consecutive five-day precipitation) progressively increased from 2001 to 2018 in the Loess Plateau region, but decrease trend was found in DRT (diurnal temperature range). The start of the growing season (SOS) of vegetation gradually advanced with precipitation from northwest to southeast, and the rate was +0.38 d/a. The overall vegetation end of the growing season (EOS) was delayed, and the trend was −2.83 d/a. The sensitivity of the different vegetation phenology to different extreme weather indices showed obvious spatial differences, the sensitivity coefficient of SOS being mainly positive in the region, whereas the sensitivity coefficient of EOS was negative generally. More sensitivity was found in the EOS to extreme climate indexes than in the SOS. Forest, shrubland and grassland have similar responses to DRT and TNn; namely, both SOS and EOS are advanced with the increase in DRT and delayed with the increase in TNn (the sensitivity coefficient is quite different) but have different responses to RX5day and TXx. These results reveal that extreme climate events have a greater impact on vegetation EOS than on vegetation SOS, with these effects varying with vegetation types. This research can provide a scientific basis for formulating a scientific basis for regional vegetation restoration strategies and disaster prediction on the Loess Plateau.
Grassland degradation has emerged as a serious socio-economic and ecological problem, endangering both long-term usage and the regional biogeochemical cycle. Climate change and human activities are the two leading factors leading to grassland degradation. However, it is unclear what the degradation level caused by these two factors is. Using the normalized difference vegetation index (NDVI) and coefficient of variation of NDVI (CVNDVI), the spatial distribution features of grassland degradation or restoration were analyzed in Qilian County in the northeast of the Qinghai–Tibet Plateau. The dominant climate variables affecting NDVI variation were selected through the combination of random forest model and stepwise regression method to improve the residual trend analysis, and on this basis, twelve possible scenarios were established to evaluate the driving factors of different degraded grasslands. Finally, used the Hurst index to forecast the trend of grassland degradation or restoration. The results showed that approximately 55.0% of the grassland had been degraded between 2000 and 2019, and the area of slight degradation (NDVIslope > 0; CVNDVI (slope) > 0; NDVIvalue > 0.2) accounted for 48.6%. These regions were centered in the northwest of Qilian County. Climate and human activities had a joint impact on grassland restoration or degradation. Human activities played a leading role in grassland restoration, while climate change was primarily a driver of grassland degradation. The regions with slight degradation or re-growing (NDVIslope > 0; CVNDVI (slope) > 0), moderate degradation (NDVIslope < 0; CVNDVI (slope) > 0), and severe degradation or desertification (NDVIslope < 0; CVNDVI (slope) < 0) were dominated by the joint effects of climate and anthropogenic activity accounted for 34.3%, 3.3%, and 1.3%, respectively, of the total grassland area. Grasslands in most areas of Qilian County are forecasted to continue to degrade, including the previously degraded areas, with continuous degradation areas accounting for 54.78%. Accurately identifying the driving factors of different degraded grassland and predicting the dynamic change trend of grassland in the future is the key to understand the mechanism of grassland degradation and prevent grassland degradation. The findings offer a reference for accurately identifying the driving forces in grassland degradation, as well as providing a scientific basis for the policy-making of grassland ecological management.
Studying the impact of regional or seasonal drought on vegetation water-use efficiency (WUE) can identify an effective theoretical basis by which vegetation can cope with future climate change. Based on remote sensing data and climate grid data, in this study, we calculated the ecosystem WUE and standardized precipitation evapotranspiration index (SPEI), analyzed the temporal and spatial divergence of seasonal drought and WUE, and explored the relationship between WUE and seasonal drought in the Loess Plateau. The results indicate that from 2001 to 2019, the humidity in spring and summer on the Loess Plateau shows an increasing trend, and the aridity in fall also shows an increasing trend. Averaged over four seasons, WUE presents distribution characteristics of “high in the southeast and low in the northwest”, with the highest WUE in summer. However, the geological distribution of the sensitivity of WUE to seasonal drought was significantly different. Spring drought increased WUE, whereas summer drought led to a decrease in WUE. When fall drought was less severe, the WUE increased; WUE response to winter SPEI was negative, but the sensitivity did not change with variation of drought degree. The sensitivity of WUE to the magnitude of seasonal drought was affected by regional dry and wet conditions. A clear seasonal divergence was found in four climate regions, along with increased drought intensity, and the sensitivity of WUE to drought magnitude in arid areas was generally higher than that in semi-arid, semi-humid areas, or humid areas. With this study, we deeply explored how ecosystems deal with the water supply strategy of seasonal drought, which is of great significance in the understanding of the coupling relationship between the carbon–water cycle and climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.