This paper presents a new jetting dispenser which is applicable to high-frequency microelectronic packaging. In order to achieve high frequency glue jetting and improve the stability of jetting dispensers, we redesign a novel displacement amplifying mechanism, and a new on–off valve jetting dispenser driven by piezoelectric actuators is developed. Firstly, the core part of this jetting dispenser—the displacement amplifying mechanism with a corner-filleted flexure hinge—is proposed and a comparison with the previous structure is carried out; then the characteristic dimensional parameters of the amplifying mechanism are determined by theoretical calculation and finite element analysis. Secondly, a prototype of the dispenser with the displacement amplifying mechanism is fabricated based on the determined parameters. We use a laser displacement sensor to test the displacement of the needle, and a maximum amplifying displacement output of 367 µm is obtained under an applied 200 V to the piezoelectric actuator, which is consistent with the simulation result and meets the requirement of high displacement output. Thirdly, we build an integrated testing system. Mixed glycerol/ethanol is chosen as the experimental dispensing glue, and the experiment and analysis of a droplet diameter are conducted. A higher jetting frequency of 400 Hz and a smaller droplet diameter of 525 µm are achieved with the glycerol/ethanol mixture, and the characteristics of consistency and temperature influencing the droplet diameter are verified by experiments.
Advanced dispensing technology is urgently needed to improve the jetting performance of fluid to meet the requirements of electronic product integration and miniaturization. In this work, an on–off valve piezostack-driven dispenser was used as a study object to investigate the effect of needle structure on jetting performance. Based on fluid dynamics, we investigated nozzle cavity pressure and jet velocity during the dispensing process using theoretical simulation for needles with and without a side cap. The results showed that the needle with a side cap had larger jet velocity and was capable of generating 8.27 MPa of pressure in the nozzle cavity, which was 2.39 times larger than the needle without a side cap. Further research on the influence of the nozzle and needle structural parameters showed that a nozzle conic angle of 85°–105°, needle conic angle of 10°–35°, and side clearance of 0.1–0.3 mm produced a dispenser with a large jet velocity and stable performance, capable of dispensing microscale droplets. Finally, a smaller droplet diameter of 0.42 mm was achieved in experiments using a glycerol/ethanol mixture, with a variation range of ± 4.61%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.