Aquilaria sinensis is one of the most important agarwood-producing trees but critically endangered at present. In this study, we produced the complete chloroplast (cp) genome of A. sinensis via genome survey analysis. The assembled genome is 174,914 base-pairs (bp) in length, with one large single-copy region of 87,361 bp and one small single-copy region of 3347 bp separated by two inverted repeats of 42,103 bp. The genome contains a total of 142 genes, including 96 protein-coding genes, 8 rRNAs, and 38 tRNAs. The phylogenomic tree strongly supports Aquilaria as a monophyly and A. sinensis sister to A. yunnanensis.
Acer saccharum is one ecologically and economically important tree species cultivated widely across the world. In this study we generated the complete chloroplast (cp) genome of A. saccharum via genome-skimming method. The assembled genome is 155,684 base-pairs (bp) in size, with one large single copy region of 85,393 bp and one small single copy region of 18,033 bp separated by two inverted repeats of 26,129 bp. The genome contains a total of 133 genes, including 85 protein-coding genes, 8 rRNAs and 40 tRNAs. Furthermore, phylogenomic estimation strongly supported A. saccharum as a distinct lineage within the monophyletic Acer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.