The food packaging sector has experienced much development since its inception. In the past few decades, innovations in packaging sector have led to the development of smart packaging (SP) systems that carve a niche in a highly competitive food industry. SP systems have great potential for improving the shelf‐life, and safety of food products apart from their basic roles of protecting the products against unwanted biological, chemical, and physical damage and keeping them clean. Indicators and sensors, SP components, are used for real‐time monitoring of meat quality and subsequently inform the retailers and consumers about the freshness, microbiological, temperature, and shelf life status of the products. Barcodes and radio‐frequency identification tags are employed in meat packaging for real‐time information about the authenticity, and traceability of the products in the supply chain. Recently, innovations in SP technologies resulted in fast, sensitive, and effective detection, sensing, and record keeping of freshness, microbiological, and shelf life status of meat and meat products. The SP system shows promise for extensive utilization in the meat industry in response to the consumer appreciation for safe, and quality meat products, as well as their waste reduction notions. This paper gives an updated overview of ongoing scientific research, and recent technological advances that offer the perspectives of developing smart meat packaging systems that are capable of monitoring the physical, microbial, and chemical changes of the package contents from producer to the point of sale and even beyond, and remediating potential adverse reactions.
This work aimed to investigate the effect of enzymatic cross-linking on the allergenic potential of shrimp tropomyosin (TM), Met e 1. The cross-linked TM with laccase (CL), laccase/caffeic acid (CLC and CLC + ), and transglutaminase (CTG and CTG + ) formed macromolecules and altered the allergen conformation. The IgG/IgE-binding potentials of the cross-linked TM were reduced as confirmed by Western blotting and ELISA. Enzymatic cross-linking improved the gastrointestinal digestibility and induced a lower level of degranulation in RBL-2H3 and KU812 cells. Moreover, cross-linked TM decreased anaphylactic symptoms, as well as reduced the serum levels of IgG1, IgE, histamine, tryptase, and mMCP-1. In spleen cells, CLC + and CTG + downregulated the Th2-related cytokines and upregulated IFN-γ and IL-10. These findings revealed that CTG + has shown more potential than CLC + in mitigating the allergenicity of TM by influencing the conformational structure, enhancing the digestibility, decreasing the cellular degranulation process, and positively modulating the Th1/Th2 immunobalance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.