Cancer is a leading cause of death worldwide, particularly because of its high mortality rate in patients who are diagnosed at late stages. Conventional biomarkers originating from blood are widely used for cancer diagnosis, but their low sensitivity and specificity limit their widespread application in cancer screening among the general population. Currently, emerging studies are exploiting novel, highly-accurate biomarkers in human body fluids that are obtainable through minimally invasive techniques, which is defined as liquid biopsy. Circular RNAs (circRNAs) are a newly discovered class of noncoding RNAs generated mainly by pre-mRNA splicing. Following the rapid development of high-throughput transcriptome analysis techniques, numerous circRNAs have been recognized to exist stably and at high levels in body fluids, including plasma, serum, exosomes, and urine. CircRNA expression patterns exhibit distinctly differences between patients with cancer and healthy controls, suggesting that circRNAs in body fluids potentially represent novel biomarkers for monitoring cancer development and progression. In this study, we summarized the expression of circRNAs in body fluids in a pan-cancer dataset and characterized their clinical applications in liquid biopsy for cancer diagnosis and prognosis. In addition, a user-friendly web interface was developed to visualize each circRNA in fluids (https://mulongdu.shinyapps.io/circrnas_in_fluids/).
Related or distant species of cultivated crops are a large pool of many desirable genes. Gene transfer from these species through conventional breeding is difficult owing to post-and pre-zygotic sexual incompatibilities. Somatic hybridization via protoplast fusion is a possible alternative for gene transfer from these species to cultivated crops. Since the early days of somatic hybridization many intergeneric somatic hybrids have been developed through symmetric fusion, asymmetric fusion and microfusion. Somatic hybrids are mainly selected by using markers such as specific media or fusion parents with special features, biochemical mutants, antibiotic resistance and complementation strategy. The hybridity of the regenerants is determined based on morphological, cytological and molecular analysis. The inheritance patterns of nuclear and cytoplasmic genomes in the somatic hybrids are diverse. Nuclear DNA from both fusion parents co-exists congruously in some hybrids with translocation and rearrangement of chromosomes, but spontaneous elimination of chromosomes from either or both fusion parents has been observed very often. In asymmetric fusion, chromosome elimination is an important issue that is a complicated process influenced by many factors, such as irradiation dose, phylogenetic relatedness, ploidy level of fusion parent and regenerants. As for chloroplast genome, uniparental segregation is mainly detected, though co-existence is also reported in some cases. The mitochondrial genome, in contrast to chloroplast, undergoes recombination and very frequent rearrangements. Somatic cell fusion has potential applications for crop genetic improvement by overcoming sexual incompatibility or reproductive barriers, and by realizing novel combinations of nuclear and/or cytoplasmic genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.