This paper describes a traffic sign detection (TSD) framework that is capable of rapidly detecting multiclass traffic signs in high-resolution images while achieving a high detection rate. There are three key contributions. The first is the introduction of two features called multiblock normalization local binary pattern (MN-LBP) and tilted MN-LBP (TMN-LBP), which are able to express multiclass traffic signs effectively. The second is a tree structure called split-flow cascade, which utilizes common features of multiclass traffic signs to construct a coarse-to-fine TSD detector. The third contribution is the Common-Finder AdaBoost (CF.AdaBoost) algorithm, which is designed to find common fea-
tures of different training sets to develop an efficient Split-Flow Cascade tree (SFC-tree) for multiclass TSD. Through experiments with an evaluation data set of high-resolution images, we show that the proposed framework is able to detect multiclass traffic signs with high detection accuracy in real time and that it outperforms the state-of-the-art approaches at detecting a large number of different types of traffic signs rapidly without using any color information.Index Terms-Common-Finder AdaBoost (CF.AdaBoost), multiblock normalization local binary pattern (MN-LBP), multiclass object detection, split-flow cascade, traffic sign detection (TSD).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.