Video-based person re-identification is a crucial task of matching video sequences of a person across multiple camera views. Generally, features directly extracted from a single frame suffer from occlusion, blur, illumination and posture changes. This leads to false activation or missing activation in some regions, which corrupts the appearance and motion representation. How to explore the abundant spatial-temporal information in video sequences is the key to solve this problem. To this end, we propose a Refining Recurrent Unit (RRU) that recovers the missing parts and suppresses noisy parts of the current frame's features by referring historical frames. With RRU, the quality of each frame's appearance representation is improved. Then we use the Spatial-Temporal clues Integration Module (STIM) to mine the spatial-temporal information from those upgraded features. Meanwhile, the multilevel training objective is used to enhance the capability of RRU and STIM. Through the cooperation of those modules, the spatial and temporal features mutually promote each other and the final spatial-temporal feature representation is more discriminative and robust. Extensive experiments are conducted on three challenging datasets, i.e., iLIDS-VID, PRID-2011 and MARS. The experimental results demonstrate that our approach outperforms existing state-of-the-art methods of video-based person re-identification on iLIDS-VID and MARS and achieves favorable results on PRID-2011.
The strong demand of autonomous driving in the industry has lead to strong interest in 3D object detection and resulted in many excellent 3D object detection algorithms. However, the vast majority of algorithms only model singleframe data, ignoring the temporal information of the sequence of data. In this work, we propose a new transformer, called Temporal-Channel Transformer, to model the spatial-temporal domain and channel domain relationships for video object detecting from Lidar data. As a special design of this transformer, the information encoded in the encoder is different from that in the decoder, i.e. the encoder encodes temporal-channel information of multiple frames while the decoder decodes the spatial-channel information for the current frame in a voxel-wise manner. Specifically, the temporal-channel encoder of the transformer is designed to encode the information of different channels and frames by utilizing the correlation among features from different channels and frames. On the other hand, the spatial decoder of the transformer will decode the information for each location of the current frame. Before conducting the object detection with detection head, the gate mechanism is deployed for re-calibrating the features of current frame, which filters out the object irrelevant information by repetitively refine the representation of target frame along with the up-sampling process. Experimental results show that we achieve the state-of-the-art performance in grid voxelbased 3D object detection on the nuScenes benchmark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.