Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans.
Advances in organic photovoltaic technologies have always been closely associated with a deeper understanding of bulk-heterojunction (BHJ) microstructure morphology, which is generally governed by the ink-formulation based on a single solvent or solvent mixtures.
BackgroundChronic disease patients often face multiple challenges from difficult comorbidities. Smartphone health technology can be used to help them manage their conditions only if they accept and use the technology.ObjectiveThe aim of this study was to develop and test a theoretical model to predict and explain the factors influencing patients’ acceptance of smartphone health technology for chronic disease management.MethodsMultiple theories and factors that may influence patients’ acceptance of smartphone health technology have been reviewed. A hybrid theoretical model was built based on the technology acceptance model, dual-factor model, health belief model, and the factors identified from interviews that might influence patients’ acceptance of smartphone health technology for chronic disease management. Data were collected from patient questionnaire surveys and computer log records about 157 hypertensive patients’ actual use of a smartphone health app. The partial least square method was used to test the theoretical model.ResultsThe model accounted for .412 of the variance in patients’ intention to adopt the smartphone health technology. Intention to use accounted for .111 of the variance in actual use and had a significant weak relationship with the latter. Perceived ease of use was affected by patients’ smartphone usage experience, relationship with doctor, and self-efficacy. Although without a significant effect on intention to use, perceived ease of use had a significant positive influence on perceived usefulness. Relationship with doctor and perceived health threat had significant positive effects on perceived usefulness, countering the negative influence of resistance to change. Perceived usefulness, perceived health threat, and resistance to change significantly predicted patients’ intentions to use the technology. Age and gender had no significant influence on patients’ acceptance of smartphone technology. The study also confirmed the positive relationship between intention to use and actual use of smartphone health apps for chronic disease management.ConclusionsThis study developed a theoretical model to predict patients’ acceptance of smartphone health technology for chronic disease management. Although resistance to change is a significant barrier to technology acceptance, careful management of doctor-patient relationship, and raising patients’ awareness of the negative effect of chronic disease can negate the effect of resistance and encourage acceptance and use of smartphone health technology to support chronic disease management for patients in the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.