The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Here, a type of photoinduced circularly polarized RTP materials are constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. These substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of the films under UV light irradiation endow materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as anti-counterfeiting materials involving photoprogrammability.
The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Herein, a new type of photoinduced circularly polarized RTP materials was constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. This substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of PMMA films under UV light irradiation endowed materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as novel anti-counterfeiting materials involving photoprogrammability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.