Graphene can be used as a platform for tunable absorbers for its tunability of conductivity. In this paper, we proposed an "uneven dielectric slab structure" for the terahertz (THz) tunable absorber based on graphene. The absorber consists of graphene-dielectric stacks and an electric conductor layer, which is easy to fabricate in the manufacturing technique. Fine tuning of the absorption resonances can be conveniently achieved by adjusting the bias voltage. Both narrowband and broadband tunable absorbers made of this structure are demonstrated without using a patterned graphene. In addition, this type of graphene-based absorber exhibits stable resonances with a wide range angles of obliquely incident electromagnetic waves.
His research interests include computational electromagnetics, electromagnetic compatibility, antenna design, metamaterials and metasurfaces, spoof surface plasmon polaritons, and localized spoof plasmons.Ji Ding was born in Jiangsu, China, in 1984. He received the B.S. degree in electronic information science and technology, M.E. degree in electromagnetic field and microwave technology, and Ph.D. degree in communication and information system from
We demonstrate that periodically textured closed surface with multiple groove depths can support multi-band spoof localized surface plasmons (LSPs). It is interesting to note that the spoof LSPs in each band resemble those generated by the textured closed surface of the same periodicity with the corresponding single groove depth. In this way, it paves the way for the generation and design of multi-band spoof LSPs. Moreover, multiple resonance band structures and devices, such as resonator, oscillator, and other band-notched structures in the microwave and terahertz regimes can be realized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.