Altered gut microbiota are assumed to be involved in the pathogenesis of irritable bowel syndrome (IBS). However, gut microbiota alterations reported in different studies are divergent and sometimes even contradictory. To better elucidate the relationship between altered gut microbiota and IBS, we characterized fecal microbiota of diarrhea-predominant IBS (IBS-D) patients and further explored the effect of rifaximin on gut microbiota using bacterial 16S rRNA gene-targeted pyrosequencing. In our study, IBS-D patients defined by Rome III criteria and age-and-gender matched healthy controls (HC) were enrolled to investigate the fecal microbiota alterations. These IBS-D patients were then treated with rifaximin for 2 weeks and followed up for 10 weeks. Fecal microbiota alterations, small intestine bacterial overgrowth (SIBO) and gastrointestinal (GI) symptoms of IBS-D patients were analyzed before and after treatment. Our results showed fecal microbiota richness but not diversity was decreased in IBS-D patients as compared to HC and there were alterations of fecal microbiota at different taxonomy levels. The abundant phyla Firmicutes was significantly decreased and Bacteroidetes was increased in IBS-D patients. Moreover, the alterations of predominant fermenting bacteria such as Bacteroidales and Clostridiales might be involved in the pathophysiology of IBS-D. In addition, rifaximin was effective in terms of SIBO eradication and even GI symptoms of IBS-D patients achieved at least 10-week improvement after treatment. Furthermore, rifaximin induced alterations of some special bacteria rather than affected the overall composition of microbiota in IBS-D patients. Meanwhile, a potential decrease in propanoate and butanoate metabolism was found in these IBS-D patients after rifaximin treatment. Taken together, there were alterations of gut microbiota in IBS-D patients as compared to HC. Rifaximin could relieve GI symptoms, modify gut microbiota in IBS-D patients and eradicate SIBO in those patients with SIBO, suggesting an additional therapeutic mechanism of rifaximin in the treatment of IBS-D. Our findings of compositional gut microbiota alterations in IBS-D and the effect of rifaximin on the gut microbiota implied that altered gut microbiota were associated with the pathogenesis of IBS.
Summary Background While the incidence of inflammatory bowel disease (IBD) has stabilised in the West, it is still increasing in several newly industrialised countries. Aims To investigate whether the environmental and dietary risk factors for IBD differ between Eastern and Western populations Methods We systematically searched PubMed, Embase, and Web of Science for studies published from inception through June 30, 2020. Data were pooled using a random effects model. Results Overall, 255 studies were assessed. We identified 25 risk factors for IBD, seven of which were noted in both Eastern and Western populations: family history of Crohn's disease [CD] or ulcerative colitis [UC], former smoking (CD/UC), smoking (CD), appendicectomy (CD), tonsillectomy (CD), meat and meat products (CD), and vitamin D deficiency (UC). The remaining factors, including urban living, current smoking, antibiotics, oral contraceptives, caesarean section, isotretinoin, total energy, fat, cholesterol, fatty acids and their sub‐classifications, eggs, and soft drinks, were associated with an increased risk of IBD in Western or Eastern populations only. We identified 21 protective factors for IBD, among which eight were common in the East and West: farm animals (CD/UC), Helicobacter pylori infection (CD/UC), multiple births (CD), physical activity (CD), history of breastfeeding (CD), pets (UC), current smoking (UC), and coffee intake (UC). Ten factors conferred protection against IBD in Western populations only, whereas eight factors conferred protection against IBD in Eastern populations only. Conclusions Numerous environmental and dietary factors influenced the development of IBD in both Western and Eastern populations, whereas certain factors influenced IBD risk differently in these populations.
Background Gut microbiota dysbiosis is associated with the occurrence and development of Crohn disease (CD). Currently, infliximab (IFX) is used more and more to treat CD; however, gut microbiota alterations during IFX therapy are variable and sometimes even contradictory. We longitudinally identified microbial changes during IFX therapy associated with the clinical and endoscopic response to IFX treatment in CD. Methods Fecal-associated microbiota was analyzed using 16S sequencing in 49 patients with active CD who were prospectively recruited at baseline, week 6, and week 30, respectively. Moreover, a model trained on the gut microbiota alterations at week 6 was developed to investigate their potential to predict clinical and endoscopic responses to IFX therapy at weeks 14 and 30. Results Characteristics of fecal microbiota composition in patients with CD after IFX treatment displayed an increased diversity and richness, a significant gain in short-chain fatty acid -producing bacteria, and a loss of pathogenic bacteria. Furthermore, certain functional profiles of Kyoto Encyclopedia of Genes and Genomes pathways were predictably altered during the treatment period. Increased proportions of Lachnospiraceae and Blautia were associated with IFX efficacy; the combined increase of these taxa at week 6 showed 83.4% and 84.2% accuracy in predicting clinical response at weeks 14 and 30, respectively, with a predictive value of 89.1% in predicting endoscopic response at week 30. Conclusions We found that IFX diminished CD-related gut microbial dysbiosis by modifying microbiota composition and function. Specifically, increased Lachnospiraceae and Blautia at week 6 are associated with the clinical and endoscopic response to IFX, providing potentially predictive biomarkers for IFX treatment decision-making.
Background and Aim: Accumulating evidence have implicated gut microbiota alterations in pediatric and adult patients with inflammatory bowel disease (IBD); however, the results of different studies are often inconsistent and even contradictory. It is believed that early changes in new-onset and treatment-naïve pediatric patients are more informative. We performed a systematic review to investigate the gut microbiota profiles in pediatric IBD and identify specific microbiota biomarkers associated with this disorder.Methods: Electronic databases were searched from inception to 31 July 2020 for studies that observed gut microbiota alterations in pediatric patients with IBD. Study quality was assessed using the Newcastle–Ottawa scale.Results: A total of 41 original studies investigating gut microbiota profiles in pediatric patients with IBD were included in this review. Several studies have reported a decrease in α-diversity and an overall difference in β-diversity. Although no specific gut microbiota alterations were consistently reported, a gain in Enterococcus and a significant decrease in Anaerostipes, Blautia, Coprococcus, Faecalibacterium, Roseburia, Ruminococcus, and Lachnospira were found in the majority of the included articles. Moreover, there is insufficient data to show specific microbiota bacteria associated with disease activity, location, and behavior in pediatric IBD.Conclusions: This systematic review identified evidence for differences in the abundance of some bacteria in pediatric patients with IBD when compared to patients without IBD; however, no clear overall conclusion could be drawn from the included studies due to inconsistent results and heterogeneous methodologies. Further studies with large samples that follow more rigorous and standardized methodologies are needed.
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder closely related to gut dysbiosis, which is associated with alterations in an important bacterial metabolite, bile acids (BAs). Although certain findings pertinent to BA changes in IBD vary among studies owing to the differences in sample type, quantitated BA species, study methodology, and patient characteristics, a specific trend concerning variations of BAs in IBD has been identified. In elaborating on this observation, it was noted that primary BAs and conjugated BAs are augmented in fecal samples but there is a reduction in secondary BAs in fecal samples. It is not entirely clear why patients with IBD manifest these changes and what role these changes play in the onset and development of IBD. Previous studies have shown that IBD-associated BA changes may be caused by alterations in BA absorption, synthesis, and bacterial modification. The complex relationship between bacteria and BAs may provide additional and deeper insight into host-gut microbiota interactions in the pathogenesis of IBD. The characteristic BA changes may generate profound effects in patients with IBD by shaping the gut microbiota community, affecting inflammatory processes, causing BA malabsorption associated with diarrhea, and even leading to intestinal dysplasia and cancer. Thus, therapeutic strategies correcting the alterations in the composition of BAs, including the elimination of excess BAs and the supplementation of deficient BAs, may prove promising in IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.