The outbreak of COVID-19 in China has attracted wide attention from all over the world. The impact of COVID-19 has been significant, raising concerns regarding public health risks in China and worldwide. Migration may be the primary reason for the long-distance transmission of the disease. In this study, the following analyses were performed. (1) Using the data from the China migrant population survey in 2017 (Sample size = 432,907), a matrix of the residence-birthplace (R-B matrix) of migrant populations is constructed. The matrix was used to analyze the confirmed cases of COVID-19 at Prefecture-level Cities from February 1-15, 2020 after the outbreak in Wuhan, by calculating the probability of influx or outflow migration. We obtain a satisfactory regression analysis result (R 2 = 0.826-0.887, N = 330). (2) We use this R-B matrix to simulate an outbreak scenario in 22 immigrant cities in China, and propose risk prevention measures after the outbreak. If similar scenarios occur in the cities of Wenzhou, Guangzhou, Dongguan, or Shenzhen, the disease transmission will be wider.(3) We also use a matrix to determine that cities in Henan province, Anhui province, and Municipalities (such as Beijing, Shanghai, Guangzhou, Shenzhen, Chongqing) in China will have a high risk level of disease carriers after a similar emerging epidemic outbreak scenario due to a high influx or outflow of migrant populations.
Differences in urban land values affect residents' living experiences and may contribute to sentiment inequality. Due to the popularity of smart mobile devices and social media platforms, online tweets with location information can be used as objective information to reflect sentiment differences of urban residents in different locations, overcoming the limitations of previous studies with small sample sizes or a lack of spatial information. Sentiment quantification based on deep learning enables the identification of spatial patterns of urban residents' sentiments. It also provides a new approach for analyzing data from big data platforms using an intelligent computing platform. This paper quantitatively analyzes the sentiment contained in social media tweets using a deep learning sentiment analysis algorithm to reveal inequalities between urban residents' sentiments and land values. The Baidu Intelligent Cloud sentiment analysis platform is used to identify 460,000 Weibo tweets in Xiamen, China, in 2020. We quantitatively analyze the positive and negative sentiments of residents and create a spatial distribution map. The concentration curve indicates sentiment inequality and the impact of high land values on residents' sentiments. The positive sentiment concentration index (CI) and correlation analysis show that the CI value is 0.07, and significant sentiment inequality exists due to the high land value. The use of social media tweet data to analyze sentiment inequality provides a reference for future interdisciplinary research in psychology, urban planning, geography, and sociology. The proposed approach of analyzing social media data using an intelligent computing platform provides new insights into multiplatform data interaction in the context of the Internet of Everything.
The growth of the manufacturing industry is the engine of rapid economic growth in developing regions. Characterizing the geographical distribution of manufacturing firms is critically important for scientists and policymakers. However, data on the manufacturing industry used in previous studies either have a low spatial resolution (or fuzzy classification) or high-resolution information is lacking. Here, we propose a map point-of-interest classification method based on machine learning technology and build a dataset of the distribution of Chinese manufacturing firms called the Gridded Manufacturing Dataset. This dataset includes the number and type of manufacturing firms at a 0.01° latitude by 0.01° longitude scale. It includes all manufacturing firms (classified into seven categories) in China in 2015 (4.56 million) and 2019 (6.19 million). This dataset can be used to characterize temporal and spatial patterns in the distribution of manufacturing firms as well as reveal the mechanisms underlying the development of the manufacturing industry and changes in regional economic policies.
In the context of global aging, people’s awareness of health is deepening, and the rapid economic development has drawn widespread attention to the health tourism industry. As a way of experiencing health, forest health tourism is becoming increasingly favored, and the site selection and construction of forest health bases (FHBs) have also developed accordingly. To ensure sustainability in the process of the site selection and construction of FHBs, the suitability of regional development and the relative coordination of the market, environment, and resource levels should be considered. Although there have been numerous studies on sustainable forestry management, a comprehensive sustainability assessment framework based on development suitability and coordination in three dimensions is needed to guide the site selection and the construction of FHBs. The following tasks were carried out in this study: (1) based on market sustainability goals, environmental optimization goals, and ecological resource sustainability goals, a comprehensive sustainability evaluation framework for development suitability indicators and coordination indicators in three dimensions was established; (2) via the use of this framework, the construction potential of FHBs in 41,636 towns in China was evaluated; the evaluation results show that the towns in Anhui, Jiangxi, Guangdong, Guangxi, Fujian, Zhejiang, Hunan, Hubei, Guizhou, and other provinces of China generally have superior conditions for the development of FHBs; (3) a multi-dimensional comprehensive analysis of FHB site selection sustainability based on development suitability and coordination was carried out for four batches of approved pilots. The comprehensive analysis results demonstrate the worsening evaluation results of the four batches. The proposed framework can provide a reference for FHB development policies for countries worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.