Membrane proteins play key roles in many biological processes, from acquisition of nutrients to neurotransmission, and are targets for more than 50% of current therapeutic drugs. However, their investigation is hampered by difficulties in their production and purification on a scale suitable for structural studies. In particular, the nature and location of affinity tags introduced for the purification of recombinant membrane proteins can greatly influence their expression levels by affecting their membrane insertion. The extent of such effects typically depends on the transmembrane topologies of the proteins, which for proteins of unknown structure are usually uncertain. For example, attachment of oligohistidine tags to the periplasmic termini of membrane proteins often interferes with folding and drastically impairs expression in Escherichia coli. To circumvent this problem we have employed a novel strategy to enable the rapid production of constructs bearing a range of different affinity tags compatible with either cytoplasmic or periplasmic attachment. Tags include conventional oligohistidine tags compatible with cytoplasmic attachment and, for attachment to proteins with a periplasmic terminus, either tandem Strep-tag II sequences or oligohistidine tags fused to maltose binding protein and a signal sequence. Inclusion of cleavage sites for TEV or HRV-3C protease enables tag removal prior to crystallisation trials or a second step of purification. Together with the use of bioinformatic approaches to identify members of membrane protein families with topologies favourable to cytoplasmic tagging, this has enabled us to express and purify multiple bacterial membrane transporters. To illustrate this strategy, we describe here its use to purify bacterial homologues of human membrane proteins from the Nramp and ZIP families of divalent metal cation transporters and from the concentrative nucleoside transporter family. The proteins are expressed in E. coli in a correctly folded, functional state and can be purified in amounts suitable for structural investigations.
Ke Tie. Vitamin K-dependent carboxylation of coagulation factors: insights from a cell-based functional study. AbstractVitamin K-dependent carboxylation is a posttranslational modification essential for the biological function of coagulation factors. Defects in carboxylation are mainly associated with bleeding disorders. With the discovery of new vitamin K-dependent proteins, the importance of carboxylation now encompasses vascular calcification, bone metabolism, and other important physiological processes. Our current knowledge of carboxylation, however, comes mainly from in vitro studies carried out under artificial conditions, which have a limited usefulness in understanding the carboxylation of vitamin K-dependent proteins in native conditions. Using a recently established mammalian cell-based assay, we studied the carboxylation of coagulation factors in a cellular environment. Our results show that the coagulation factor's propeptide controls substrate binding and product releasing during carboxylation, and factor IX's propeptide appears to have the optimal affinity for efficient carboxylation. Additionally, non-conserved residues in the propeptide play an important role in carboxylation. A cell-based functional study of naturally occurring mutations in the propeptide successfully interpreted the clinical phenotype of warfarin's hypersensitivity during anticoagulation therapy in patients with these mutations. Unlike results obtained from in vitro studies, results from our cell-based study indicate that although the propeptide of osteocalcin cannot direct the carboxylation of the coagulation factor, it is required for osteocalcin's efficient carboxylation. This suggests that the coagulation factors may have a different mechanism of carboxylation from osteocalcin. Together, results from this study provide insight into efficiently controlling one physiological process, such as coagulation without affecting the other, like bone metabolism.
Drug-induced bleeding disorders contribute to substantial morbidity and mortality. Antithrombotic agents that cause unintended bleeding with obvious reasons are relatively easy to control. However, the mechanisms of most drug-induced bleeding disorders are poorly understood which makes intervention more difficult. As most bleeding disorders are associated with the dysfunction of coagulation factors, we adapted our recently established cell-based assay to identify drugs that impact the biosynthesis of active vitamin K-dependent (VKD) coagulation factors with possible off-target effects. The NIH Clinical Collection (NCC) library containing 727 drugs was screened and 9 drugs, including the most commonly prescribed anticoagulant warfarin, were identified. Bleeding complications associated with most of these drugs have been clinically reported, but the pathogenic mechanisms remain unclear. Further characterization of the 9 top-hit drugs on the inhibition of VKD carboxylation suggests that warfarin, lansoprazole, and nitazoxanide mainly target vitamin K epoxide reductase (VKOR), while idebenone, clofazimine, and AM404 mainly target vitamin K reductase (VKR) in vitamin K redox cycling. The other three drugs mainly affect vitamin K availability within the cells. The molecular mechanisms underlying the inactivation of VKOR and VKR by these drugs are clarified. Results from both cell-based and animal model studies suggest that the anticoagulation effect of drugs targeting VKOR, but not VKR, can be rescued by the administration of vitamin K. These findings provide insights into the prevention and management of drug-induced bleeding disorders. The established cell-based high-throughput screening approach provides a powerful tool for identifying new vitamin K antagonists that function as anticoagulants.
Gamma-glutamyl carboxylase (GGCX) is an integral membrane protein that catalyzes posttranslational carboxylation of a number of vitamin K-dependent (VKD) proteins involved in a wide variety of physiological processes, including blood coagulation, vascular calcification, and bone metabolism. Naturally occurring GGCX mutations are associated with multiple distinct clinical phenotypes. However, the genotype-phenotype correlation of GGCX remains elusive. Here, we systematically examined the effect of all naturally occurring GGCX mutations on the carboxylation of three structure-function distinct VKD proteins in a cellular environment. GGCX mutations were transiently introduced into GGCX-deficient human embryonic kidney 293 cells stably expressing chimeric coagulation factor, matrix Gla protein (MGP), or osteocalcin as VKD reporter-proteins, then the carboxylation efficiency of these reporter-proteins were evaluated. Our results show that GGCX mutations differentially affect the carboxylation of these reporter-proteins and the efficiency of using vitamin K as a cofactor. Carboxylation of these reporter-proteins by a C-terminal truncation mutation (R704X) implies that GGCX's C-terminus plays a critical role in the binding of osteocalcin, but not in the binding of coagulation factors and MGP. This has been confirmed by probing the protein-protein interaction between GGCX and its protein substrates in live cells using bimolecular fluorescence complementation and chemical cross-linking assays. Additionally, using a minigene splicing assay, we demonstrated that several GGCX missense mutations affect GGCX's pre-mRNA splicing rather than altering the corresponding amino acid residues. Results from this study interpreted the correlation of GGCX's genotype and its clinical phenotypes, and clarified why vitamin K administration rectified bleeding disorders but not non-bleeding disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.