Instantaneous vehicle counting of traffic scenes based on high‐altitude video is an important way for real‐time traffic information collection in intelligent transportation systems (ITS). However, vehicle counts based on high‐altitude video are susceptible to problems such as denseness, occlusion and small size. The mainstream method is to use a Convolutional Neural Network (CNN) to output density maps and obtain vehicle count results. However, most CNNs are computationally expensive and have poor real‐time performance. Therefore, we propose a lightweight CNN named GhostCount, specially designed for high‐accuracy vehicle counts on edge devices. First, we combine ResNet‐18 and Lightweight RefineNet to build an encoder–decoder network architecture to effectively extract vehicle features in complex traffic scenes. Next, we replace the ordinary convolutional layers in ResNet‐18 with Ghost modules to lighten the network. Finally, a binary cross‐entropy loss function is introduced to suppress background noise. We demonstrate GhostCount on public datasets (TRANCOS, CARPK, PUCPR+) and our self‐built dataset (CSCAR). Results show that GhostCount can perform instantaneous vehicle counting with higher accuracy and faster inference speed than other representative lightweight CNNs. The method we propose would provide new solutions and ideas for ITS applications such as traffic information collection and smart parking management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.