A global decrease in microRNA (miRNA) levels is often observed in human cancers 1,2 , indicating that small RNAs may have an intrinsic function in tumour suppression. To identify miRNA components of tumour suppressor pathways, we compared miRNA expression profiles of wildtype and p53-deficient cells. Here we describe a family of miRNAs, miR-34a-c, whose expression reflected p53 status. Genes encoding miRNAs in the miR-34 family are direct transcriptional targets of p53, whose induction by DNA damage and oncogenic stress depends on p53 both in vitro and in vivo. Ectopic expression of miR-34 induces cell cycle arrest in both primary and tumour-derived cell lines, which is consistent with the observed ability of miR-34 to downregulate a programme of genes promoting cell cycle progression. The p53 network suppresses tumour formation through the coordinated activation of multiple transcriptional targets, and miR-34 may act in concert with other effectors to inhibit inappropriate cell proliferation.The p53 tumour suppressor lies at a nexus of cellular pathways that sense DNA damage, cellular stress and improper mitogenic stimulation 3 . p53 integrates such signals and, in response, induces growth arrest, promotes apoptosis, blocks angiogenesis, or mediates DNA repair in a context-dependent manner 4 . The importance of p53 in preventing tumour formation is indicated by the presence of mutations in the p53 pathway in nearly all cancers 5 . Although p53 is most studied as a transcriptional activator, several reports have suggested that p53 represses the expression of specific genes 6 . Studies of p53-mediated Reprints and permissions information is available at www.nature.com/reprints.
SUMMARY Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells, and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in non-expressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.
Multiple mechanisms have evolved to regulate the eukaryotic genome. We have identified CTN-RNA, a mouse tissue-specific approximately 8 kb nuclear-retained poly(A)+ RNA that regulates the level of its protein-coding partner. CTN-RNA is transcribed from the protein-coding mouse cationic amino acid transporter 2 (mCAT2) gene through alternative promoter and poly(A) site usage. CTN-RNA is diffusely distributed in nuclei and is also localized to paraspeckles. The 3'UTR of CTN-RNA contains elements for adenosine-to-inosine editing, involved in its nuclear retention. Interestingly, knockdown of CTN-RNA also downregulates mCAT2 mRNA. Under stress, CTN-RNA is posttranscriptionally cleaved to produce protein-coding mCAT2 mRNA. Our findings reveal a role of the cell nucleus in harboring RNA molecules that are not immediately needed to produce proteins but whose cytoplasmic presence is rapidly required upon physiologic stress. This mechanism of action highlights an important paradigm for the role of a nuclear-retained stable RNA transcript in regulating gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.