Matter state inside neutron stars is an exciting problem in astrophysics, nuclear physics and particle physics. The equation of state (EOS) of neutron stars plays a crucial role in the present multimessenger astronomy, especially after the event of GW170817. We propose a new neutron star EOS "QMF18" from the quark level, which describes well robust observational constraints from free-space nucleon, nuclear matter saturation, heavy pulsar measurements and the tidal deformability of the very recent GW170817 observation. For this purpose, we employ the quark-mean-field (QMF) model, allowing one to tune the density dependence of the symmetry energy and study effectively its correlations with the Love number and the tidal deformability. We provide tabulated data for the new EOS and compare it with other recent EOSs from various many-body frameworks.
Binary neutron star (NS) mergers with their subsequent fast-rotating supramassive magnetars are one attractive interpretation for at least some short gamma-ray bursts (SGRBs), based on the internal plateau commonly observed in the early X-ray afterglow. The rapid decay phase in this scenario signifies the epoch when the star collapses to a black hole after it spins down, and could effectively shed light on the underlying unclear equation of state (EoS) of dense matter. In the present work, we confront the protomagnetar masses of the internal plateau sample from representative EoS models, with the one independently from the observed galactic NS-NS binary, aiming to contribute new compact star EoSs from SGRB observations. For this purpose, we employ various EoSs covering a wide range of maximum mass for both NSs and quark stars (QSs), and in the same time satisfying the recent observational constraints of the two massive pulsars whose masses are precisely measured (around 2M ⊙ ). We first illustrate that how well the underlying EoS would reconcile with the current posterior mass distribution, is largely determined by the static maximum mass of that EoS. We then construct 3 new postmerger QS EoSs (PMQS1, PMQS2, PMQS3), respecting fully the observed distribution. We also provide easy-to-use parameterizations for both the EoSs and the corresponding maximum gravitational masses of rotating stars. In addition, we calculate the fractions of postmerger products for each EoS, and discuss potential consequences for the magnetar-powered kilonova model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.