Tephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the genera Anastrepha, Bactrocera, Ceratitis, and Rhagoletis. Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera of Klebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia, and Providencia constitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.
The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruit crops. Commensal bacteria play a very important part in the development, reproduction, and fitness of their host fruit fly. Uncovering the function of gut bacteria has become a worldwide quest. Using antibiotics to remove gut bacteria is a common method to investigate gut bacteria function. In the present study, three types of antibiotics (tetracycline, ampicillin, and streptomycin), each with four different concentrations, were used to test their effect on the gut bacteria diversity of laboratory-reared B. dorsalis. Combined antibiotics can change bacteria diversity, including cultivable and uncultivable bacteria, for both male and female adult flies. Secondary bacteria became the dominant population in female and male adult flies with the decrease in normally predominant bacteria. However, in larvae, only the predominant bacteria decreased, the bacteria diversity did not change a lot, likely because of the short acting time of the antibiotics. The bacteria diversity did not differ among fruit fly treatments with antibiotics of different concentrations. This study showed the dynamic changes of gut bacterial diversity in antibiotics-treated flies, and provides a foundation for research on the function of gut bacteria of the oriental fruit fly.
Rhodosporidium toruloides is an oleaginous yeast under development with promising industrial applications. Since promoters of different strengths have been demonstrated as an efficient strategy to fine-tune gene expression in synthetic biology, a set of constitutive promoters with strengths varying over 2 orders of magnitude were identified in R. toruloides through transcriptome analysis under different growth conditions. Promoter candidates were first cloned and characterized using an enhanced green fluorescent protein (EGFP) as a reporter under eight conditions, and 31 promoters were identified with strength varied from 0.1 to 19.0 folds of the commonly used strong promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (PGPD1). The resultant promoters were then used to optimize the linoleic acid biosynthetic pathway in R. toruloides in different media, including the use of lignocellulosic hydrolysate as the fermentation substrate, and improved the production of linoleic acid by up to 214.2% in minimal medium, with the highest production of 350.3 mg/L in Yeast Peptone Dextrose medium. This work has enriched the promoter library of R. toruloides, and helped develop R. toruloides as a platform organism for applications in biomanufacturing and synthetic biology.
Neoceratitis asiatica (Becker) (Diptera: Tephritidae) is one of the most important fruit pestsof wolfberry which is a traditional Chinese medicinal herb. We characterized the complete mitochondrial genome of N. asiatica and described its organization in this study. This mitogenome had a total length of 15,481 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The overall base composition of N. asiatica in descending order was 40.6% A, 8.5% G, 38.4% T and 12.6% C. The phylogenetic relationships shows that Ceratitis capitata and N. asiatica may be sister taxa. This is the first report of the complete mitochondrial genome of a member of the Neoceratitis Genus and the complete mitochondrial genome sequence may provide useful information for phylogenetic analysis and studies between the genera Ceratitis and Neoceratitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.