The spike (S) protein of the infectious bronchitis virus (IBV) plays a central role in the pathogenicity, the immune antibody production, serotype and the tissue tropism. In this study, we generate 11 monoclonal antibodies (mAbs) against S1 subunit of IBV Sczy3 strain, and two mAbs 1D5 and 6A12 were positive in indirect ELISA against both His-S1 protein and the purified whole viral antigen. MAb 6A12 and 1D5 could recognized by other 10 IBV strains (IBVs) from five different genotypes, except that 1D5 had a relatively low reaction with two of the 10 tested IBVs. End-point neutralizing assay performed in chicken embro kidney (CEK) cells revealed that the neutralization titer of 6A12 and 1D5 against Sczy3 reached 1:44.7 and 1:40.6, respectively. After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 1D5 and 6A12, which corresponded to the amino acid sequences (87)PPQGMAW(93) and (412)IQTRTEP(418), respectively, in the IBV S1 subunit. Sequences comparison revealed that epitope (412)IQTRTEP(418) was conserved among IBVs, while the epitope (87)PPQGMAW(93) was relatively variable among IBVs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections.
Infectious bronchitis (IB) is a highly contagious disease in chickens caused by infectious bronchitis virus (IBV). The present study was carried out with the aim to develop anti-spike 1 (S1) subunit monoclonal antibodies (MAbs) that could react with IBV strains of different genotypes. The high antigenicity region of S1 gene of an QX-like IBV strain Sczy3 was amplified and ligated into the prokaryotic expression vector pET-32a(+), and the recombinant His-S1 fusion proteins were expressed and purified. The purified whole viral antigen of Sczy3 strain was used to immunize BALB/c mice to produce hybridoma-secreting anti-IBV MAbs. Eleven anti-IBV MAbs were generated, and two MAbs 1C8 and 2C10 were positive in indirect ELISA against both His-S1 protein and the purified whole viral antigen. These two MAbs showed positive reaction with IBV in Western blot, and the isotype were both IgM. These two MAbs react specifically with IBV but not with Newcastle disease virus (NDV) or avian influenza virus (AIV) subtype H9 or H5, and could cross-react with other 10 IBV strains in five different genotypes. End-point neutralizing assay performed in chicken embro kidney (CEK) cells revealed that the neutralization titer of 1C8 and 2C10 against Sczy3 reached 1:2.82 and 1:4.70, respectively. The anti-S1 MAbs produced in the present work may be valuable in developing an antigen-capture ELISA test for antigen detection or a competitive ELISA test for antibody detection or therapeutic medicine for IB in poultry.
ABSTRACT. Infectious bronchitis virus (IBV) can multiply effectively in chick embryo kidney (CEK) cells after adapting to the chick embryo. To investigate the dynamic changes in IBV load in the supernatant of primary CEK cells, we developed an SYBR Green I-based real-time polymerase chain reaction assay to quantify nucleic copy numbers of the IBV-Sczy3 strain. The 20, 54, and 87th generations of CEK-adapted IBV-Sczy3 strains were used to infect CEK cells, and then nucleic copy numbers in the samples of supernatant collected at 12, 24, 36, 48, 60, and 72 h were detected. The results showed that the rapid growth period of the virus load of all the 3 generations was approximately 12-36 h post- (2015) infection; the peak of the virus load appeared at 36 h post-infection and then decreased gradually in the order of 20th > 54th > 87th for the 3 generations of CEK-adapted strains; the dynamic change curve of the IBV load in the supernatant of primary CEK cells showed a single peak. The results of this study provide a useful reference for CEK-adapted IBV field strains and the production of CEK-attenuated IBV vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.