The evaluation of sustainable rural tourism potential is a key work in sustainable rural tourism development. Due to the complexity of the rural tourism development situation and the limited cognition of people, most of the assessment problems for sustainable rural tourism potential are highly uncertain, which brings challenges to the characterisation and measurement of evaluation information. Besides, decision-makers (DMs) usually do not exhibit complete rationality in the practical evaluation process. To tackle such problems, this paper proposes a new behaviour multi-attribute group decision-making (MAGDM) method with probabilistic linguistic terms sets (PLTSs) by integrating Wasserstein distance measure into TODIM (an acronym in Portuguese of interactive and multicriteria decision making) method. Firstly, a new Wasserstein-based distance measure with PLTSs is defined, and some properties of the proposed distance are developed. Secondly, based on the correlation coefficient among attributes and standard deviation of each attribute, an attribute weight determination method (called PL-CRITIC method) is proposed. Subsequently, a Wasserstein distance-based probabilistic linguistic TODIM method is developed. Finally, the proposed method is applied to the evaluation of sustainable rural tourism potential, along with sensitivity and comparative analyses, as a means of illustrating the effectiveness and advantages of the new method.
In recent years, the combination of biomedical field and computer field is booming. Obtaining useful information from a large amount of biomedical text information is a research topic of great significance. Convolutional neural network has a good ability to extract useful features, so it is widely used in the field of text classification. In this paper, a novel approach for biomedical text classification based on improved convolutional neural network is proposed to solve the problem that deep convolutional neural network has a large amount of computation and can not perceive the relationship between levels well. In this paper, we use the combination of deep separable convolution and void convolution to improve the convolutional neural network. At the same time, we use the attention mechanism to classify biomedical literature. In addition, focusing loss function is used to improve the imbalance of biomedical texts. Experimental results show that the classification model in this paper is effective for biomedical texts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.