The weaving area is an important junction that affects the efficiency and traffic safety at the municipal interchanges. To explore the factors affecting traffic efficiency and the spatial distribution characteristics of traffic risks in the weaving areas of municipal interchanges, this study employed a microscopic traffic software of Vissim to construct a simulation model of weaving areas and evaluate the impact of road and traffic design parameters in the short weaving on traffic efficiency and risks, which includes ramp delay, mainline through lane (TL) traffic delay, average ramp speed, TL average speed, and collision rate. Through variance analysis via a large number of simulation scenarios, the weaving length is identified as the most important factor affecting traffic efficiency and risks in the short weaving area. Subsequently, three different types of weaving lengths with 350 m, 450 m, and 550 m were set to conduct the sensitivity analysis based on four performance indexes of mean acceleration and deceleration, acceleration range, deceleration range, and speed standard deviation as the representative variables of spatial risk distribution. The simulation results illustrate that a shorter weaving length has a significant influence on risk distribution, especially the highest risk probability at the positions after three-quarters of the inner and outer lanes in the short weaving area at the municipal interchange. Finally, this study verified the traffic risk reduction method of having traffic safety facilities and traffic organization at the complex interchange with double-entry and single-exit weaving areas in the city of Guangzhou, China. The research proposed a method to analyze the influence of the design parameters in the short weaving area on traffic efficiency and safety and provided a reference for the risk spatial distribution analysis and improvement in the short weaving area.
This paper is focused on analyzing the risk distribution characteristics in short weaving areas of urban interchanges. The study was carried out on merge-diverge weaving areas with different lengths of 350 m, 450 m, and 550 m. To evaluate and identify the risk, the average speed, speed standard deviation, acceleration range, and average absolute value of acceleration were selected as indicators. Vissim simulation was applied to collect the identification indicator value of 21 typical lane sections. The results show that the risk is concentrated at the 3/4 section and exit section of the outer lane. The vehicle-operating status of the inner and middle lanes is almost unaffected. The operating speed of the outer lane is approximately 4/5 of the same position in the inner lane at 3/4 of the length of the weaving segment, while the speed standard deviation is approximately 2 times greater, and the acceleration range is approximately 2–3 times greater. Moreover, the acceleration of the average absolute value is also approximately 2–3 times greater. To balance the risk distribution, an optimization method is proposed based on the result analysis. Compared with the original design, the results show that a reasonable method of traffic organization for the complex weaving area can effectively improve the risk distribution in the weaving area and reduce the high peak of risk concentration. These results provide a basis for the optimization method and traffic organization of short weaving areas of municipal interchanges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.