The purpose of this paper is to predict failures based on textual sequence data. The current failure prediction is mainly based on structured data. However, there are many unstructured data in aircraft maintenance. The failure mentioned here refers to failure types, such as transmitter failure and signal failure, which are classified by the clustering algorithm based on the failure text. For the failure text, this paper uses the natural language processing technology. Firstly, segmentation and the removal of stop words for Chinese failure text data is performed. The study applies the word2vec moving distance model to obtain the failure occurrence sequence for failure texts collected in a fixed period of time. According to the distance, a clustering algorithm is used to obtain a typical number of fault types. Secondly, the failure occurrence sequence is mined using sequence mining algorithms, such as-PrefixSpan. Finally, the above failure sequence is used to train the Bayesian failure network model. The final experimental results show that the Bayesian failure network has higher accuracy for failure prediction.
In the process of aircraft maintenance and support, a large amount of fault description text data is recorded. However, most of the existing fault diagnosis models are based on structured data, which means they are not suitable for unstructured data such as text. Therefore, a text-driven aircraft fault diagnosis model is proposed in this paper based on Word to Vector (Word2vec) and prior-knowledge Convolutional Neural Network (CNN). The fault text first enters Word2vec to perform text feature extraction, and the extracted text feature vectors are then input into the proposed prior-knowledge CNN to train the fault classifier. The prior-knowledge CNN introduces expert fault knowledge through Cloud Similarity Measurement (CSM) to improve the performance of the fault classifier. Validation experiments on five-year maintenance log data of a civil aircraft were carried out to successfully verify the effectiveness of the proposed model.
This paper aims to predict the landing state during the landing phase to ensure landing safety and reduce the accidents loss. Some past researches have demonstrated the landing phase is the most dangerous phase in flight cycle and fatal accident. The landing safety problem has become a hot research problem in safety field. This study concentrates more on the prediction and advanced warning for landing safety. Firstly, four landing states are divided by three flight parameter variables including touchdown, vertical acceleration and distance to go; Subsequently, pattern recognition based on BP neural network is used to established the landing state prediction model; the genetic algorithm is used to initialize the model parameter; the Markov chain is proposed to revise and improve the model for higher prediction precision. Finally, in comparison of pattern recognition and the Markov chain revision results, the Markov chain revision method is demonstrated to be practical and effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.