In a social network, adoption probability refers to the probability that a social entity will adopt a product, service, or opinion in the foreseeable future. Such probabilities are central to fundamental issues in social network analysis, including the influence maximization problem. In practice, adoption probabilities have significant implications for applications ranging from social network-based target marketing to political campaigns; yet, predicting adoption probabilities has not received sufficient research attention. Building on relevant social network theories, we identify and operationalize key factors that affect adoption decisions: social influence, structural equivalence, entity similarity, and confounding factors. We then develop the locally-weighted expectation-maximization method for Naïve Bayesian learning to predict adoption probabilities on the basis of these factors. The principal challenge addressed in this study is how to predict adoption probabilities in the presence of confounding factors that are generally unobserved. Using data from two large-scale social networks, we demonstrate the effectiveness of the proposed method. The empirical results also suggest that cascade methods primarily using social influence to predict adoption probabilities offer limited predictive power, and that confounding factors are critical to adoption probability predictions.
L ink recommendation, which suggests links to connect currently unlinked users, is a key functionality offered by major online social networks. Salient examples of link recommendation include "People You May Know" on Facebook and LinkedIn as well as "You May Know" on Google+. The main stakeholders of an online social network include users (e.g., Facebook users) who use the network to socialize with other users and an operator (e.g., Facebook Inc.) that establishes and operates the network for its own benefit (e.g., revenue). Existing link recommendation methods recommend links that are likely to be established by users but overlook the benefit a recommended link could bring to an operator. To address this gap, we define the utility of recommending a link and formulate a new research problem-the utility-based link recommendation problem. We then propose a novel utility-based link recommendation method that recommends links based on the value, cost, and linkage likelihood of a link, in contrast to existing link recommendation methods that focus solely on linkage likelihood. Specifically, our method models the dependency relationship between the value, cost, linkage likelihood, and utility-based link recommendation decision using a Bayesian network; predicts the probability of recommending a link with the Bayesian network; and recommends links with the highest probabilities. Using data obtained from a major U.S. online social network, we demonstrate significant performance improvement achieved by our method compared with prevalent link recommendation methods from representative prior research.
Link recommendation has attracted significant attention from both industry practitioners and academic researchers. In industry, link recommendation has become a standard and most important feature in online social networks, prominent examples of which include “People You May Know” on LinkedIn and “You May Know” on Google+. In academia, link recommendation has been and remains a highly active research area. This article surveys state-of-the-art link recommendation methods, which can be broadly categorized into learning-based methods and proximity-based methods. We further identify social and economic theories, such as social interaction theory, that underlie these methods and explain from a theoretical perspective why a link recommendation method works. Finally, we propose to extend link recommendation research in several directions that include utility-based link recommendation, diversity of link recommendation, link recommendation from incomplete data, and experimental study of link recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.