In the conventional neural network, deep depth is required to achieve high accuracy of recognition. Additionally, the problem of saturation may be caused, wherein the recognition accuracy is down-regulated with the increase in the number of network layers. To tackle the mentioned problem, a neural network model is proposed incorporating a micro convolutional module and residual structure. Such a model exhibits few hyper-parameters, and can extended flexibly. In the meantime, to further enhance the separability of features, a novel loss function is proposed, integrating boundary constraints and center clustering. According to the experimental results with a simulated dataset of HRRP signals obtained from thirteen 3D CAD object models, the presented model is capable of achieving higher recognition accuracy and robustness than other common network structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.