Oxidation reactions on semiconducting metal oxide (SMOs) surfaces have been extensively worked on in catalysis, fuel cells, and sensors. SMOs engage powerfully in energy-related applications such as batteries, supercapacitors, solid oxide fuel cells (SOFCs), and sensors. A deep understanding of SMO surface and oxygen interactions and defect engineering has become significant because all of the above-mentioned applications are based on the adsorption/absorption and consumption/transportation of adsorbed (physisorbed-chemisorbed) oxygen. More understanding of adsorbed oxygen and oxygen vacancies (VO•,VO••) is needed, as the former is the vital requirement for sensing chemical reactions, while the latter facilitates the replenishment of adsorbed oxygen ions on the surface. We determined the relation between sensor response (sensitivity) and the amounts of adsorbed oxygen ions (O2ads−, Oads, −O2ads2−, Oads2−), water/hydroxide groups (H2O/OH−), oxygen vacancies (VO•, VO••), and ordinary lattice oxygen ions (Olattice2−) as a function of temperature. During hydrogen (H2) testing, the different oxidation states (W6+, W5+, and W4+) of WO3 were quantified and correlated with oxygen vacancy formation (VO•, VO••). We used a combined application of XPS, UPS, XPEEM-LEEM, and chemical, electrical, and sensory analysis for H2 sensing. The sensor response was extraordinarily high: 424 against H2 at a temperature of 250 °C was recorded and explained on the basis of defect engineering, including oxygen vacancies and chemisorbed oxygen ions and surface stoichiometry of WO3. We established a correlation between the H2 sensing mechanism of WO3, sensor signal magnitude, the amount of adsorbed oxygen ions, and sensor testing temperature. This paper also provides a review of the detection, quantification, and identification of different adsorbed oxygen species. The different surface and bulk-sensitive characterization techniques relevant to analyzing the SMOs-based sensor are tabulated, providing the sensor designer with the chemical, physical, and electronic information extracted from each technique.
The adsorption of 4-mercaptobenzoic acid (4-MBA) on anatase (101) and rutile (110) TiO2 surfaces has been studied using synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy techniques. Photoelectron spectroscopy results suggest that the 4-MBA molecule bonds to both TiO2 surfaces through the carboxyl group, following deprotonation in a bidentate geometry. Carbon K-edge NEXAFS spectra show that the phenyl ring of the 4-MBA molecule is oriented at 70° ± 5° from the surface on both the rutile (110) and anatase (101) surfaces, although there are subtle differences in the electronic structure of the molecule following adsorption between the two surfaces.
Oxidation reactions on semiconducting metal oxides (SMOs) surfaces have been extensively worked on in catalysis, fuel cells, and sensors. SMOs engaged powerfully in energy-related applications such as batteries, supercapacitors, solid oxide fuel cells (SOFCs), and chemical gas sensors. The deep understanding of SMO surface and oxygen interactions and defect engineering has become significant because all those mentioned applications are based on the adsorption/absorption and consumption/transportation of adsorbed (physisorbed-chemisorbed) oxygen. More understanding of adsorbed oxygen and oxygen vacancies (〖V_O^•,V〗_O^(••)) is needed, as the former is the vital requirement for sensing chemical reactions, while the latter facilitates the replenishment of adsorbed oxygen ions on the surface. We determined the relation between sensor response (sensitivity) and the amounts of adsorbed oxygen ions (O_(2(ads))^-,O_((ads),)^- O_2(ads)^(2-),O_((ads))^(2-)), water/hydroxide groups (H2O/OH^-), oxygen vacancies (〖V_O^•,V〗_O^(••)), and ordinary lattice oxygen ions (O_lattice^(2-)) as a function of temperature. During hydrogen (H2) testing, the different oxidation states (W6+, W5+, and W4+) of WO3 were quantified and correlated with oxygen vacancy formation (〖V_O^•,V〗_O^(••)). We used a combined application of XPS, UPS, XPEEM-LEEM, and chemical, electrical and sensory analysis for H2 sensing. We established a correlation between the H2 sensing mechanism of WO3, sensor signal magnitude, the amount of adsorbed oxygen ions, and sensor testing temperature. This paper also provides a review of the detection, quantification, and identification of different adsorbed oxygen species. The different surface and bulk-sensitive characterization techniques relevant to analyzing the SMOs-based sensor are tabulated, providing the sensor designer with the chemical, physical, and electronic information extracted from each technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.