SERPINA1/AAT/α-1-antitrypsin (serpin family A member 1) deficiency (SERPINA1/ AAT-D) is an autosomal recessive disorder characterized by the retention of misfolded SERPINA1/AAT in the endoplasmic reticulum (ER) of hepatocytes and a significant reduction of serum SERPINA1/AAT level. The Z variant of SERPINA1/AAT, containing a Glu342Lys (E342K) mutation (SERPINA1E342K/ATZ), the most common form of SERPINA1/AAT-D, is prone to misfolding and polymerization, which retains it in the ER of hepatocytes and leads to liver injury. Both proteasome and macroautophagy/autophagy pathways are responsible for disposal of SERPINA1E342K/ATZ after it accumulates in the ER. However, the mechanisms by which SERPINA1E342K/ATZ is selectively degraded by autophagy remain unknown. Here, we showed that ER membrane-spanning ubiquitin ligase (E3) SYVN1/HRD1 enhances the degradation of SERPINA1E342K/ATZ through the autophagy-lysosome pathway. We found that SYVN1 promoted SERPINA1E342K/ATZ, especially Triton X 100-insoluble SERPINA1E342K/ATZ clearance. However, the effect of SYVN1 in SERPINA1E342K/ATZ clearance was impaired after autophagy inhibition, as well as in autophagy-related 5 (atg5) knockout cells. On the contrary, autophagy induction enhanced SYVN1-mediated SERPINA1E342K/ATZ degradation. Further study showed that SYVN1 mediated SERPINA1E342K/ATZ ubiquitination, which is required for autophagic degradation of SERPINA1E342K/ATZ by promoting the interaction between SERPINA1E342K/ATZ and SQSTM1/p62 for formation of the autophagy complex. Interestingly, SYVN1-mediated lysine 48 (K48)-linked polyubiquitin chains that conjugated onto SERPINA1E342K/ATZ might predominantly bind to the ubiquitin-associated (UBA) domain of SQSTM1 and couple the ubiquitinated SERPINA1E342K/ATZ to the lysosome for degradation. In addition, autophagy inhibition attenuated the suppressive effect of SYVN1 on SERPINA1E342K/ATZ cytotoxicity, and the autophagy inducer rapamycin enhanced the suppressive effect of SYVN1 on SERPINA1E342K/ATZ-induced cell apoptosis. Therefore, this study proved that SYVN1 enhances SERPINA1E342K/ATZ degradation through SQSTM1-dependent autophagy and attenuates SERPINA1E342K/ATZ cytotoxicity.
Background. Previous research has shown that peroxiredoxin 1 (Prdx1) is an important modulator of physiological and pathophysiological cardiovascular events. This study is aimed at investigating the role and underlying mechanism of Prdx1 in doxorubicin- (DOX-) induced cardiotoxicity. Cardiac-specific expression of Prdx1 was induced in mice, and the mice received a single dose of DOX (15 mg/kg) to generate cardiotoxicity. First, our study demonstrated that Prdx1 expression was upregulated in the heart and in cardiomyocytes after DOX treatment. Second, we provided direct evidence that Prdx1 overexpression ameliorated DOX-induced cardiotoxicity by attenuating oxidative stress and cardiomyocyte apoptosis. Mechanistically, we found that DOX treatment increased the phosphorylation level of apoptosis signal-regulating kinase-1 (ASK1) and the downstream protein p38 in the heart and in cardiomyocytes, and these effects were decreased by Prdx1 overexpression. In contrast, inhibiting Prdx1 promoted DOX-induced cardiac injury via the ASK1/p38 pathway. These results suggest that Prdx1 may be an effective therapeutic option to prevent DOX-induced cardiotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.