We report the design of a diblock copolymer with architecture and function inspired by the lubricating glycoprotein lubricin. This diblock copolymer, synthesized by sequential reversible additionfragmentation chain-transfer polymerization, consists of a cationic cartilage-binding domain and a brush-lubricating domain. It reduces the coefficient of friction of articular cartilage under boundary mode conditions (0.088 ± 0.039) to a level equivalent to that provided by lubricin (0.093 ± 0.011). Additionally, both the EC 50 (0.404 mg/mL) and cartilage-binding time constant (7.19 min) of the polymer are comparable to purified human and recombinant lubricin. Like lubricin, the tribological properties of this polymer are dependent on molecular architecture. When the same monomer composition was evaluated either as an AB diblock copolymer or as a random copolymer, the diblock effectively lubricated cartilage under boundary mode conditions whereas the random copolymer did not. Additionally, the individual polymer blocks did not lubricate independently, and lubrication could be competitively inhibited with an excess of binding domain. This diblock copolymer is an example of a synthetic polymer with lubrication properties equal to lubricin under boundary mode conditions, suggesting its potential utility as a therapy for joint pathologies like osteoarthritis. lubricin | biomimetic | boundary mode lubrication | osteoarthritis
Background: Lubricin, a mucinous glycoprotein, plays a chondroprotective role as a constituent of synovial fluid. Structural analogs have been synthesized to mimic the structure and function of native lubricin in an effort to recapitulate this effect with the goal of delaying progression of osteoarthritis (OA). Purpose: To investigate the efficacy of intra-articular injections of lubricin mimetics in slowing or preventing the progression of posttraumatic OA by using a rat anterior cruciate ligament transection model. Study Design: Controlled laboratory design. Methods: Four lubricin mimetics were investigated, differing from one another in their binding orientations and steric interactions. Eighty skeletally mature Sprague-Dawley rats underwent bilateral anterior cruciate ligament transections and were randomly allocated to receive intra-articular injections (50 µL/injection) of 1 of the 4 mimetics in the right knee and equal volumes of saline injection in the contralateral knee (control). All rats were euthanized 8 weeks postoperatively and assessed via biomechanical analysis, which evaluated comparative friction coefficients across the 4 groups, and histological evaluation of articular cartilage, osteophytes, and synovitis. The Osteoarthritis Research Society International (OARSI) histopathological assessment system was used to evaluate the degree of articular cartilage degeneration and osteophytes, while synovitis was assessed through a semiquantitative scoring system. Binding efficacy of the 4 mimetics was assessed in vitro and in vivo through the immunohistochemical localization of polyethylene glycol. Articular cartilage degeneration and synovitis scoring data analyses were performed with generalized estimating equation modeling. Results: Injection of the group 3 mimetic (random 24 + 400 + 30) directly correlated with improved OARSI scores for femoral articular cartilage degeneration when compared with saline-injected contralateral control knees ( P = .0410). No lubricin mimetic group demonstrated statistically significant differences in OARSI scores for tibial articular cartilage degeneration. Injection of the group 4 mimetic (AB 24 + 400 + 30) led to a statistically significant difference in osteophyte OARSI score ( P = .0019). None of the 4 lubricin mimetics injections incited an additive synovial inflammatory response. Immunohistochemical staining substantiated the binding capacity of all 4 mimetics, while in vivo experimentation revealed that the group 1 and 3 mimetics were still retained within the joint 4 weeks after injection. There were no differences in friction coefficients between any pair of groups and no significant trends based on lubricin mimetic structure. Conclusion: We demonstrated that the tribosupplementation of a traumatically injured knee with a specific lubricin structural analog may attenuate the natural progression of OA. Clinical Relevance: The current lack of efficacious clinical options to counter the onset and subsequent development of OA suggests that further investigation into the synthesis and behavior of lubricin analogs could yield novel translational applications.
We report how the tribological properties of a class of diblock copolymers with architecture and function inspired by the lubricating glycoprotein lubricin correlate to chemical composition. This class of diblock copolymers, consisting of a cationic cartilage-binding block and a brush-lubricating block, demonstrates that boundary lubrication of articular cartilage more strongly depends on the cartilage-binding block than the lubrication block. Specifically, the cartilage-binding functional groups (tertiary or quaternary amines) and cartilage-binding block length significantly influence the degree of lubrication under boundary mode experimental conditions. An optimal number (∼24 in this case) of cartilage-binding groups led to the lowest coefficient of friction, and an increase or decrease in the number of cations in the binding block led to partial (>24, and between 12 and 24) or complete (=12) loss of lubricating ability. The length of the lubricating block (DP = 200 or 400) chosen in this study had no effect on the degree of lubrication. These results are put into context in terms of binding affinity to the cartilage and the spatial packing density of the polymer on the cartilage surface and can serve as a useful guide for future designs of synthetic lubricants that rival the efficacy of natural lubricants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.