The average age of hyperuricemia patients has gradually decreased, but young patients with primary hyperuricemia often do not exhibit clinical symptoms and have not received sufficient attention. However, a lack of symptoms with primary hyperuricemia does not mean that high serum uric acid (UA) levels cannot lead to pathological effects, such as oxidative stress and inflammation, and the specific damage is still unclear. We aimed to determine the relationship between oxidative stress and inflammation to explore the possible role of pathological damage in asymptomatic young patients with primary hyperuricemia.A total of 333 participants were enrolled in our study: 158 asymptomatic young patients with primary hyperuricemia and 175 healthy persons from a health check-up population. Malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and general biochemical markers were measured.We found no differences in biochemical markers (fasting glucose, TG, TC, LDL-C, HDL-C, SCr, BUN, AST, and ALT) between the patients and healthy persons. Subsequent analyses of oxidative stress and inflammation revealed that the serum levels of MDA, IL-6, and TNF-α in the patients were significantly higher than those in the healthy control group (P < .001), and the SOD activity was significantly lower (P < .001). As the UA levels increased, MDA increased significantly and SOD decreased significantly; likewise, IL-6 and TNF-α increased significantly as the UA level increased. MDA showed a significant positive correlation with IL-6 (r = 0.367, P < .001) and TNF-α (r = 0.319, P < .001), and SOD was negatively correlated with IL-6 (r = −0.241, P < .01) and TNF-α (r = −0.308, P < .001). Multivariable logistic regression analysis showed that UA (OR: 2.379, 95% CI: 1.698–3.286, P < .001; OR: 3.261, 95% CI: 1.729–3.857, P < .001; for IL-6 and TNF-α, respectively) and MDA (OR: 1.836, 95% CI: 1.283–2.517, P < .01; OR: 2.532, 95% CI: 1.693–3.102, P < .001; for IL-6 and TNF-α, respectively) were risk factors for high IL-6 and TNF-α and that SOD (OR: 0.517, 95% CI: 0.428–0.763, P < .01; OR: 0.603, 95% CI: 0.415–0.699, P < .001; for IL-6 and TNF-α, respectively) was a protective factor.In our study, some abnormal pathological effects were found in asymptomatic young patients with hyperuricemia, suggesting that in young hyperuricemia patients, oxidative stress, inflammation and the inflammatory response may be related to the oxidative stress induced by UA. Therefore, we should pay more attention to the pathological damage caused by these alterations.
LipoxinA4 (LXA4) is a well-known key mediator of endogenous anti-inflammation and of the resolution of inflammation. Considerable oxidative stress occurs during inflammation due to the generation of reactive oxidative species (ROS). Moreover, high levels of uric acid (UA) contribute to endothelial cell dysfunction, which can promote disease-related morbidity, and NADPH oxidase-derived ROS are crucial regulatory factors in these responses. However, LXA4 also has the potential to reduce oxidative stress. The aim of the present study was to examine whether LXA4 could suppress UA-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) and to investigate its mechanisms of action in vitro. HUVECs were incubated with or without LXA4, followed by the addition of UA. ROS levels were then measured using 2,7-dichlorodihydrofluorescein diacetate and lucigenin-enhanced chemiluminescence was used to evaluate NADPH oxidase activity. p47phox or p22phox small interfering (si)RNA were transfected into HUVECs and protein levels of p47phox were detected using western blot analysis. LXA4 significantly inhibited UA-induced generation of ROS to the same extent as the NADPH oxidase inhibitor, diphenyleneiodonium chloride. Notably, transfection of p47phox siRNA attenuated the generation of ROS and the activation of NADPH oxidase. Cells transfected with p22phox siRNA demonstrated a significant reduction in the expression of p47phox on the membrane. Further experiments demonstrated that LXA4 interfered with the transfer of p47phox from the cytoplasm to the cell membrane. These findings suggested that LXA4 inhibited the release of NADPH oxidase derived ROS in HUVECs stimulated by UA. A potential mechanism of action underlying this effect could be LXA4-mediated suppression of NADPH oxidase activity, leading to inhibition of p47phox translocation from the cytoplasm to the cell membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.