There were no systematic researches about autophagy-related long noncoding RNA (lncRNA) signatures to predict the survival of patients with colon adenocarcinoma. It was necessary to set up corresponding autophagy-related lncRNA signatures. The expression profiles of lncRNAs which contained 480 colon adenocarcinoma samples were obtained from The Cancer Genome Atlas (TCGA) database. The coexpression network of lncRNAs and autophagy-related genes was utilized to select autophagy-related lncRNAs. The lncRNAs were further screened using univariate Cox regression. In addition, Lasso regression and multivariate Cox regression were used to develop an autophagy-related lncRNA signature. A risk score based on the signature was established, and Cox regression was used to test whether it was an independent prognostic factor. The functional enrichment of autophagy-related lncRNAs was visualized using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Ten prognostic autophagy-related lncRNAs (AC027307.2, AC068580.3, AL138756.1, CD27-AS1, EIF3J-DT, LINC01011, LINC01063, LINC02381, AC073896.3, and SNHG16) were identified to be significantly different, which made up an autophagy-related lncRNA signature. The signature divided patients with colon adenocarcinoma into the low-risk group and the high-risk group. A risk score based on the signature was a significantly independent factor for the patients with colon adenocarcinoma (HR=1.088, 95%CI=1.057−1.120; P<0.001). Additionally, the ten lncRNAs were significantly enriched in autophagy process, metabolism, and tumor classical pathways. In conclusion, the ten autophagy-related lncRNAs and their signature might be molecular biomarkers and therapeutic targets for the patients with colon adenocarcinoma.
Background Hepatocellular carcinoma (HCC) with high heterogeneity is one of the most frequent malignant tumors throughout the world. However, there is no research to establish a ferroptosis-related lncRNAs (FRlncRNAs) signature for the patients with HCC. Therefore, this study was designed to establish a novel FRlncRNAs signature to predict the survival of patients with HCC. Method The expression profiles of lncRNAs were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. FRlncRNAs co-expressed with ferroptosis-related genes were utilized to establish a signature. Cox regression was used to construct a novel three FRlncRNAs signature in the TCGA cohort, which was verified in the GEO validation cohort. Results Three differently expressed FRlncRNAs significantly associated with prognosis of HCC were identified, which composed a novel FRlncRNAs signature. According to the FRlncRNAs signature, the patients with HCC could be divided into low- and high-risk groups. Patients with HCC in the high-risk group displayed shorter overall survival (OS) contrasted with those in the low-risk group (P < 0.001 in TCGA cohort and P = 0.045 in GEO cohort). This signature could serve as a significantly independent predictor in Cox regression (multivariate HR > 1, P < 0.001), which was verified to a certain extent in the GEO cohort (univariate HR > 1, P < 0.05). Meanwhile, it was also a useful tool in predicting survival among each stratum of gender, age, grade, stage, and etiology,etc. This signature was connected with immune cell infiltration (i.e., Macrophage, Myeloid dendritic cell, and Neutrophil cell, etc.) and immune checkpoint blockade targets (PD-1, CTLA-4, and TIM-3). Conclusion The three FRlncRNAs might be potential therapeutic targets for patients, and their signature could be utilized for prognostic prediction in HCC.
Background Hepatocellular carcinoma (HCC) is one of the most universal malignant liver tumors worldwide. However, there were no systematic studies to establish glycolysis‑related gene pairs (GRGPs) signatures for the patients with HCC. Therefore, the study aimed to establish novel GRGPs signatures to better predict the prognosis of HCC. Methods Based on the data from Gene Expression Omnibus, The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium databases, glycolysis-related mRNAs were used to construct GRGPs. Cox regression was applied to establish a seventeen GRGPs signature in TCGA dataset, which was verified in two validation (European and American, and Asian) datasets. Results Seventeen prognostic GRGPs (HMMR_PFKFB1, CHST1_GYS2, MERTK_GYS2, GPC1_GYS2, LDHA_GOT2, IDUA_GNPDA1, IDUA_ME2, IDUA_G6PD, IDUA_GPC1, MPI_GPC1, SDC2_LDHA, PRPS1_PLOD2, GALK1_IER3, MET_PLOD2, GUSB_IGFBP3, IL13RA1_IGFBP3 and CYB5A_IGFBP3) were identified to be significantly progressive factors for the patients with HCC in the TCGA dataset, which constituted a GRGPs signature. The patients with HCC were classified into low-risk group and high-risk group based on the GRGPs signature. The GRGPs signature was a significantly independent prognostic indicator for the patients with HCC in TCGA (log-rank P = 2.898e−14). Consistent with the TCGA dataset, the patients in low-risk group had a longer OS in two validation datasets (European and American: P = 1.143e−02, and Asian: P = 6.342e−08). Additionally, the GRGPs signature was also validated as a significantly independent prognostic indicator in two validation datasets. Conclusion The seventeen GRGPs and their signature might be molecular biomarkers and therapeutic targets for the patients with HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.