Gradient-based iterative algorithms have been widely used to solve optimization problems, including resource sharing and network management. When system parameters change, it requires a new solution independent of the previous parameter settings from the iterative methods. Therefore, we propose a learning approach that can quickly produce optimal solutions over a range of system parameters for constrained optimization problems. Two Coupled Long Short-Term Memory networks (CLSTMs) are proposed to find the optimal solution. The advantages of this framework include: (1) near-optimal solution for a given problem instance can be obtained in few iterations during the inference, (2) enhanced robustness as the CLSTMs can be trained using system parameters with distributions different from those used during inference to generate solutions. In this work, we analyze the relationship between minimizing the loss functions and solving the original constrained optimization problem for certain parameter settings. Extensive numerical experiments using datasets from Alibaba reveal that the solutions to a set of nonconvex optimization problems obtained by the CLSTMs reach within 90% or better of the corresponding optimum after 11 iterations, where the number of iterations and CPU time consumption are reduced by 81% and 33%, respectively, when compared with the gradient descent with momentum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.