In order to improve the corrosion resistance of AZ31 magnesium alloy, the amorphous/nanocrystal Al-Cr-Fe film has been successfully prepared on AZ31 magnesium alloy by double glow plasma technology. The amorphous/nanocrystalline consists of two different regions, i.e., an amorphous layer on outmost surface and an underlying lamellar nanocrystalline layer with a grain size of less than 10 nm.
The corrosion behavior of amorphous/nanocrystalline Al-Cr-Fe film in 3.5% NaCl solution is investigated using an electrochemical polarization measurement. Compared with the AZ31 magnesium alloy, the amorphous/nanocrystalline Al-Cr-Fe film exhibits more positive corrosion potentials and lower corrosion current densities than that of AZ31 magnesium alloy. XPS measurement reveals that the passive film formed on the Al-Cr-Fe film after the anodic polarization tests is strongly enriched in Cr 2 O 3 , Fe 2 O 3 and Al 2 O 3 at outer surface of the film and in the inner layer consists of Cr 2 O 3 , FeO and Al 2 O 3 .double glow sputtering, Al-Cr-Fe film, AZ31 magnesium alloy, corrosion behavior, amorphous/nanocrystal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.