Combinations of new antidepressants like duloxetine and second-generation antipsychotics like quetiapine are used in clinical treatment of major depressive disorder, as well as in forensic toxicology scenarios. The drug–drug interaction (DDI) between quetiapine and duloxetine is worthy of attention to avoid unnecessary adverse effects. However, no pharmacokinetic DDI studies of quetiapine and duloxetine have been reported. In the present study, a rapid and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous determination of quetiapine and duloxetine in rat plasma. A one-step protein precipitation with acetonitrile was applied for sample preparation. The analytes were eluted on an Eclipse XDB-C
18
column using the mixture of acetonitrile and 2 mM ammonium formate containing 0.1% formic acid at a gradient elution within 6.0 min. Quantification was performed in multiple-reaction-monitoring mode with the ion transitions m/z 384.4 → 253.2 for quetiapine, m/z 298.1→154.1 for duloxetine and m/z 376.2→165.2 for IS (haloperidol), respectively. Good linearity was obtained in the range of 0.50–100 ng/mL for quetiapine (r
2
= 0.9972) and 1.00–200 ng/mL for duloxetine (r
2
= 0.9982) using 50 μL of rat plasma, respectively. The method was fully validated with accuracy, precision, matrix effects, recovery and stability. The validated data have met the acceptance criteria in FDA guideline. The method was applied to a pharmacokinetic interaction study and the results indicated that quetiapine had significant effect on the enhanced plasma exposure of duloxetine in rats under combination use. This study could be readily applied in therapeutic drug monitoring of major depressive disorder patients receiving such drug combinations.
A rapid, sensitive, and selective liquid chromatography with tandem mass spectrometry method was developed and fully validated for the simultaneous quantification of arotinolol and amlodipine in rat plasma. Two internal standards were introduced with metoprolol as the internal standard of arotinolol and (S)-amlodipine-d4 as the internal standard of amlodipine. The analytes were isolated from 50.0 μL plasma samples by a simple protein precipitation using acetonitrile. The chromatographic separation was achieved in 5 min on a C18 column. The mobile phase consisted of phase A 5% methanol and phase B 95% methanol (both containing 0.5% formic acid and 5 mM ammonium acetate) and was delivered in gradient elution at 0.300 mL/min. Quantification was performed in multiple reaction monitoring mode with the transition m/z 372.1 → 316.1 for arotinolol, m/z 268.2 → 116.2 for metoprolol, m/z 409.1 → 238.1 for amlodipine and m/z 413.1 → 238.1 for (S)-amlodipine-d4. Linearity was obtained over the range of 0.200-40.0 ng/mL for arotinolol (r = 0.9988) and 0.500-100 ng/mL for amlodipine (r = 0.9985) in rat plasma. The validated data have met the acceptance criteria in FDA guideline. This method was successfully applied to a pharmacokinetic interaction study in rats, and the results indicated that there was no significant drug-drug interaction between arotinolol and amlodipine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.