In this study, we first introduce polygonal cylinder and torus using Cartesian products and topologically identifications and then find their Wiener and hyper-Wiener indices using a quick, interesting technique of counting. Our suggested mathematical structures could be of potential interests in representation of computer networks and enhancing lattice hardware security.
Topological index (TI) is a function that assigns a numeric value to a (molecular) graph that predicts its various physical and structural properties. In this paper, we study the sum graphs (S-sum, R-sum, Q-sum and T-sum) using the subdivision related operations and strong product of graphs which create hexagonal chains isomorphic to many chemical compounds. Mainly, the exact values of first general Zagreb index (FGZI) for four sum graphs are obtained. At the end, FGZI of the two particular families of sum graphs are also computed as applications of the main results. Moreover, the dominating role of the FGZI among these sum graphs is also shown using the numerical values and their graphical presentations.
The use of numerical numbers to represent molecular networks plays a crucial role in the study of physicochemical and structural properties of the chemical compounds. For some integer k and a network G , the networks S k G and R k G are its derived networks called as generalized subdivided and generalized semitotal point networks, where S k and R k are generalized subdivision and generalized semitotal point operations, respectively. Moreover, for two connected networks, G 1 and G 2 , G 1 G 2 S k and G 1 G 2 R k are T -sum networks which are obtained by the lexicographic product of T G 1 and G 2 , respectively, where T ε S k , R k . In this paper, for the integral value k ≥ 1 , we find exact values of the first and second Zagreb indices for generalized T -sum networks. Furthermore, the obtained findings are general extensions of some known results for only k = 1 . At the end, a comparison among the different generalized T -sum networks with respect to first and second Zagreb indices is also included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.