Development of potentially life-threatening enterocolitis is the most frequent complication in children with Hirschsprung disease (HSCR), even after definitive corrective surgery. Intestinal microbiota likely contribute to the etiology of enterocolitis, so the aim of this study was to compare the fecal bacterial and fungal communities of children who developed Hirschsprung-associated enterocolitis (HAEC) with HSCR patients who had never had enterocolitis. Eighteen Hirschsprung patients who had completed definitive surgery were enrolled: 9 had a history of HAEC and 9 did not. Fecal DNA was isolated and 16S and ITS-1 regions sequenced using Next Generation Sequencing and data analysis for species identification. The HAEC group bacterial composition showed a modest reduction in Firmicutes and Verrucomicrobia with increased Bacteroidetes and Proteobacteria compared with the HSCR group. In contrast, the fecal fungi composition of the HAEC group showed marked reduction in diversity with increased Candida sp., and reduced Malassezia and Saccharomyces sp. compared with the HSCR group. The most striking finding within the HAEC group is that the Candida genus segregated into “high burden” patients with 97.8% C. albicans and 2.2% C. tropicalis compared with “low burden” patients 26.8% C. albicans and 73% C. tropicalis. Interestingly even the low burden HAEC group had altered Candida community structure with just two species compared to more diverse Candida populations in the HSCR patients. This is the first study to identify Candida sp. as potentially playing a role in HAEC either as expanded commensal species as a consequence of enterocolitis (or treatment), or possibly as pathobioants contributing to the pathogenesis of HAEC. These findings suggest a dysbiosis in the gut microbial ecosystem of HAEC patients, such that there may be dominance of fungi and bacteria predisposing patients to development of HAEC.
Ty elements of Saccharomyces cerevisiae are long terminal repeat (LTR) retroelements related to retroviruses. Normal levels of Ty1 transposition require Dbr1p, a cellular enzyme that cleaves 2'-5' RNA bonds. We show that Ty1 RNAs lacking identifiable 5' ends accumulate in virus-like particles (VLPs) in dbr1 mutants. Debranching this RNA in vitro with Dbr1p creates an uncapped version of the normal Ty1 RNA 5' end. We show that the 5' nucleotide (nt) of Ty1 RNA forms a 2'-5' bond with a nt near the 3' end of the same RNA, creating a lariat. The properties of the lariat suggest it forms by a novel mechanism and that branching and debranching may play roles in Ty1 reverse transcription at the minus-strand transfer step.
Purpose The aim of the study was to characterize enterocolitis in the Ednrb-null (Ednrb−/−) mouse with aganglionosis of the colon and to develop and validate a semiquantitative histopathologic grading system to assess enterocolitis. Methods We isolated colon and ileal specimens of Ednrb−/− and control mice (Ednrb+/+) and performed histochemical staining (H&E) on tissue sections. After establishing inflammation grading criteria, 2 blinded pathologists independently assessed the severity and depth of inflammation of proximal colon segments on 2 separate occasions. Interclass correlations (ICCs) and coefficient of variation (CV) were calculated to determine interrater and intrarater agreement. We then prospectively applied the enterocolitis grading system to Ednrb−/− mice that became clinically ill. A cohort of Ednrb−/− mice were observed until they developed clinical illness, at which time they were euthanized and had multiple organ homogenates cultured for bacteria, and colon and small bowel were histopathologically graded for enterocolitis. Spearman’s rank correlations comparing enterocolitis scores with level of bacteremia were performed. Results Intra- and interrater ICCs of the histologic scoring system were satisfactory (0.61 and 0.94, respectively), as were intra- and interrater CVs (18% and 9%, respectively). Of the Ednrb−/− mice, 65% developed bacteremia. Those with bacteremia had significantly higher enterocolitis scores than those without bacteremia (P < .01). Ednrb−/− mice that developed bacteremia showed a strong positive correlation between total enterocolitis scores and number of bacterial colony forming units in peritoneal lavage, liver, kidney, and aerobic spleen. Conclusions The Ednrb−/− mouse with aganglionosis develops enterocolitis and has features similar to Hirschsprung-associated enterocolitis in humans. Our grading system is a reliable way to assess enterocolitis. By performing microsurgical pull-through, we can now perform controlled, hypothesis-driven, mechanistic studies to evaluate etiologic factors affecting enterocolitis in the Ednrb−/− mouse.
Purpose Children with Hirschsprung disease (HD) who have a history of enterocolitis (HAEC) have a shift in colonic microbiota, many of which are necessary for short chain fatty acid (SCFA) production. As SCFAs play a critical role in colonic mucosal preservation, we hypothesized that fecal SCFA composition is altered in children with HAEC. Methods A multicenter study enrolled 18 HD children, abstracting for history of feeding, antibiotic/probiotic use, and enterocolitis symptoms. HAEC status was determined per Pastor et al. criteria (12). Fresh feces were collected for microbial community analysis via 16S sequencing as well as SCFA analysis by gas chromatography–mass spectrometry. Results Nine patients had a history of HAEC, and nine had never had HAEC. Fecal samples from HAEC children showed a 4-fold decline in total SCFA concentration vs. non-HAEC HD patients. We then compared the relative composition of individual SCFAs and found reduced acetate and increased butyrate in HAEC children. Finally, we measured relative abundance of SCFA-producing fecal microbiota. Interestingly, 10 of 12 butyrate-producing genera as well as 3 of 4 acetate-producing genera demonstrated multi-fold expansion. Conclusion Children with HAEC history have reduced fecal SCFAs and altered SCFA profile. These findings suggest a complex interplay between the colonic metabolome and changes in microbiota, which may influence the pathogenesis of HAEC.
Potentially life-threatening enterocolitis is the most frequent complication in children with colonic aganglionosis (Hirschsprung disease, HSCR), and little is known about the mechanisms leading to enterocolitis. Splenic lymphopenia has been reported in the Endothelin Receptor B (Ednrb)-null mouse model of HSCR that develops enterocolitis. In this study, we sought to identify molecular mechanisms underlying this immune phenotype. We employed the Ednrb−/− mouse, and the knockout of its ligand, Edn3 (Edn3−/−). The major finding is that enterocolitis in the Ednrb−/− and Edn3−/− mice lead to thymic involution, splenic lymphopenia, and suppression of B lymphopoiesis as a consequence of colonic aganglionosis, not an intrinsic Edn3-Ednrb signaling defect directly affecting the lymphoid organs. We showed that adoptive transfer of Ednrb−/− marrow repopulated the RAG2-null mice marrow, thymus and spleen without development of enterocolitis. We identified the glucocorticoid corticosterone, as a potential mediator of the immune phenotype. This previously unrecognized pattern of immune abnormalities in mouse is nearly identical to lymphoid depletion in neonatal sepsis during severe physiological stress, suggesting that the mouse model used here could be also used for sepsis studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.