Esophageal cancer (EC) is a type of aggressive cancer without clinically relevant molecular subtypes, hindering the development of effective strategies for treatment. To define molecular subtypes of EC, we perform mass spectrometry-based proteomic and phosphoproteomics profiling of EC tumors and adjacent non-tumor tissues, revealing a catalog of proteins and phosphosites that are dysregulated in ECs. The EC cohort is stratified into two molecular subtypes—S1 and S2—based on proteomic analysis, with the S2 subtype characterized by the upregulation of spliceosomal and ribosomal proteins, and being more aggressive. Moreover, we identify a subtype signature composed of ELOA and SCAF4, and construct a subtype diagnostic and prognostic model. Potential drugs are predicted for treating patients of S2 subtype, and three candidate drugs are validated to inhibit EC. Taken together, our proteomic analysis define molecular subtypes of EC, thus providing a potential therapeutic outlook for improving disease outcomes in patients with EC.
Background/Aims: Plastrum testudinis extracts (PTE) show osteoprotective effects on glucocorticoid-induced osteoporosis in vivo and in vitro. However, the underlying molecular mechanism of PTE in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is unclear. Methods: BMSC proliferation was investigated using the Cell Counting Kit-8 assay. BMSC differentiation and osteogenic mineralization were assayed using alkaline phosphatase and Alizarin red staining, respectively. The mRNA expression levels of Tnfr2, Traf2, Pi3k, Akt, Gsk3β, Runx2, and Ocn were measured using real time quantitative polymerase chain reaction. Protein levels of TNFR2, TRAF2, p-PI3K, p-AKT, p-β-CATENIN, and p-GSK3β were analyzed by western blotting. The functional relationship of Let-7f-5p and Tnfr2 was determined by luciferase reporter assays. Results: The optimum concentration for PTE was 30 μg/ml. PTE significantly promoted BMSC osteogenic differentiation and mineralization after 7 and 14 days in culture, respectively. The combination of PTE and osteogenic induction exhibited significant synergy. PTE upregulated Runx2, and Ocn mRNA expression, and downregulated Tnfr2, Traf2, Pi3k, Akt, and Gsk3β mRNA expression. PTE inhibited TNFR2, TRAF2, and p-β-CATENIN protein expression, and promoted p-PI3K, p-AKT, and p-GSK3β protein expression. In addition, Tnfr2 was a functional target of Let-7f-5p in 293T cells. Conclusions: Our results suggested that PTE may promote BMSC proliferation and osteogenic differentiation via a mechanism associated with the regulation of Let-7f-5p and the TNFR2/PI3K/AKT signaling pathway.
This study was designed to investigate the metabolic and transcriptional alterations in seminal fluid caused by asthenozoospermia (AS). To address these issues, a method of metabonomics based on ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) and real‐time quantitative PCR (RT‐qPCR) was performed to identify some crucial biomarkers and transcription levels of the enzymes in seminal fluid. Seminal fluid samples were collected from 87 AS patients and 73 healthy males with normozoospermia. The quantitative analysis by UPLC–MS/MS showed that 19 metabolites in seminal plasma were associated with AS, and they were involved in several metabolic pathways, such as energy metabolism, purine metabolism, methionine cycle, and branched chain amino acid metabolism. Among these metabolites, the levels of citric acid, malic acid, succinic acid, and pyruvic acid, which are related to energy metabolism, were collectively reduced in the AS group, whereas the lactic acid level was enhanced. These results indicated that lesser energy source (adenosine triphosphate) was produced through the anaerobic glycolysis pathway rather than via aerobic catabolism of suger and tricarboxylic acid cycle, resulting in reduced power of sperms. Meanwhile, partial least squares discriminant analysis showed significant differences in metabolic profiles between the AS and control groups. In addition, RT‐qPCR results revealed that the expression levels of four genes encoding fructokinase citrate synthase, succinate dehydrogenase, and spermine synthase, which were related to energy metabolism, were decreased in the AS group. The 23 descriptors with differential expression in AS may be valuable for the diagnosis and sequential study on AS. These results will help highlight the role of sperm inactivity in AS pathogenesis.
Previous studies indicated that let-7 enhances osteogenesis and bone formation of human adipose-derived mesenchymal stem cells (MSCs). We also have confirmed that let-7f-5p expression was upregulated during osteoblast differentiation in rat bone marrow-derived MSCs (BMSCs) and was downregulated in the vertebrae of patients with glucocorticoid (GC)-induced osteoporosis (GIOP). The study was performed to determine the role of let-7f-5p in GC-inhibited osteogenic differentiation of murine BMSCs in vitro and in GIOP in vivo. Here, we report that dexamethasone (Dex) inhibited osteogenic differentiation of BMSCs and let-7f-5p expression, while increasing the expression of transforming growth factor beta receptor 1 (TGFBR1), a direct target of let-7f-5p during osteoblast differentiation under Dex conditions. In addition, let-7f-5p promoted osteogenic differentiation of BMSCs, as indicated by the promotion of alkaline phosphatase (ALP) staining and activity, Von Kossa staining, and osteogenic marker expression (Runx2,Osx, Alp, and Ocn), but decreased TGFBR1 expression in the presence of Dex. However, overexpression of TGFBR1 reversed the upregulation of let-7f-5p during Dex-treated osteoblast differentiation. Knockdown of TGFBR1 reversed the effect of let-7f-5p downregulation during Dex-treated osteogenic differentiation of BMSCs. We also found that glucocorticoid receptor (GR) mediated transcriptional silencing of let-7f-5p and its knockdown enhanced Dex-inhibited osteogenic differentiation. Further, when injected in vivo, agomiR-let-7f-5p significantly reversed bone loss induced by Dex, as well as increased osteogenic marker expression (Runx2, Osx, Alp, and Ocn) and decreased TGFBR1 expression in bone extracts. These findings indicated that the regulatory axis of GR/let-7f-5p/TGFBR1 may be important for Dex-inhibited osteoblast differentiation and that let-7f-5p may be a useful therapeutic target for GIOP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.