Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) (PL) is a naturally occurring yellow pigment found in the plants of the Plumbaginaceae, Droseraceae, Ancistrocladaceae, and Dioncophyllaceae families. It has been reported that PL exhibits anticarcinogenic, anti-inflammatory, and analgesic activities. However, the mechanism underlying its anti-inflammatory action remains unknown. In the current study, we investigated and characterized the anti-inflammatory and analgesic effects of PL orally administrated in a range of dosages from 5 to 20 mg/kg. We also examined the role of nuclear factor B (NF-B) and proinflammatory cytokines and mediators in this effect. The results showed that PL significantly and dose-dependently suppressed the paw edema of rats induced by carrageenan and various proinflammatory mediators, including histamine, serotonin, bradykinin, and prostaglandin E 2 . PL reduced the number of writhing episodes of mice induced by the intraperitoneal injection of acetic acid, but it did not reduce the writhing episode numbers induced by MgSO 4 in mice or prolong the tail-flick reaction time of rats to noxious thermal pain. Mechanistic studies showed that PL effectively decreased the production of the proinflammatory cytokines interleukin 1, interleukin 6, and tumor necrosis factor ␣. It also inhibited the expression of the proinflammatory mediators inducible nitricoxide synthase and cyclooxygenase 2, whereas it did not inhibit the expression of cyclooxygenase 1. Further studies demonstrated that PL suppressed inhibitor of B␣ phosphorylation and degradation, thus inhibiting the phosphorylation of the p65 subunit of NF-B. This study suggests that PL has a potential to be developed into an anti-inflammatory agent for treating inflammatory diseases.
This paper presents a review of the development of optical fibers made of multiple materials, particularly including silica glass, soft glass, polymers, hydrogels, biomaterials, Polydimethylsiloxane (PDMS), and Polyperfluoro-Butenylvinyleth (CYTOP). The properties of the materials are discussed according to their various applications. Typical fabrication techniques for specialty optical fibers based on these materials are introduced, which are mainly focused on extrusion, drilling, and stacking methods depending on the materials' thermal properties. Microstructures render multiple functions of optical fibers and bring more flexibility in fiber design and device fabrication. In particular, micro-structured optical fibers made from different types of materials are reviewed. The sensing capability of optical fibers enables smart monitoring. Widely used techniques to develop fiber sensors, i.e., fiber Bragg grating and interferometry, are discussed in terms of sensing principles and fabrication methods. Lastly, sensing applications in oil/gas, optofluidics, and particularly healthcare monitoring using specialty optical fibers are demonstrated. In comparison with conventional silica-glass single-mode fiber, state-of-the-art specialty optical fibers provide promising prospects in sensing applications due to flexible choices in materials and microstructures.
Chemoresistance in multidrug-resistant (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene, is a major obstacle to successful chemotherapy for colorectal cancer. Previous studies have indicated that sinomenine can enhance the absorption of various P-gp substrates. In the present study, we investigated the effect of sinomenine on the chemoresistance in colon cancer cells and explored the underlying mechanism. We developed multidrug-resistant Caco-2 (MDR-Caco-2) cells by exposure of Caco-2 cells to increasing concentrations of doxorubicin. We identified overexpression of COX-2 and MDR-1 genes as well as activation of the NF-κB signal pathway in MDR-Caco-2 cells. Importantly, we found that sinomenine enhances the sensitivity of MDR-Caco-2 cells towards doxorubicin by downregulating MDR-1 and COX-2 expression through inhibition of the NF-κB signaling pathway. These findings provide a new potential strategy for the reversal of P-gp-mediated anticancer drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.