Sedimentary manganese carbonate deposits, the major economic source of Mn globally, are the product of complex interactions that occur in the marine environment, including both biological Mn(II) oxidation and Mn(IV) reduction. Precise and accurate age constraints for Mn carbonate deposits have been difficult to obtain, hindering the understanding of possible correlations between Mn metallogenic and paleoenvironmental processes at regional to global scale. The involvement of organic matter during Mn carbonate mineralization, however, allows for the Re-Os system, an ideal geochronological tool for determining the depositional or alteration ages of organic-rich rocks, to be applied. Here we present the first Re-Os systematics of Mn carbonate ores from the giant Ortokarnash Mn deposit in the West Kunlun orogenic belt, Xinjiang, China. The use of the Re-Os geochronometer, along with petrographic, whole-rock total organic carbon, and major element analyses, allows for the depositional age and mineralizing processes to be directly constrained. The Mn carbonate ores with relatively homogeneous initial 187Os/188Os values yield a robust mineralization age of 320.3 ± 6.6 Ma (Model 1; Isoplot regression) or 321.8 ± 14.5 Ma (Monte Carlo simulation). This age correlates well with U-Pb ages of the youngest detrital zircon group from the footwall volcanic breccia-bearing limestone and a newly obtained Re-Os age from the hanging-wall marlstones. Enrichment of hydrogenous Re and Os in the Ortokarnash Mn carbonate ores is likely related to the variable redox environments during Mn carbonate mineralization, where Re tends to be preserved in the organic matter that persists following the diagenetic reduction of the Mn(IV) oxyhydroxides in suboxic or anoxic sediment pore water. Conversely, Os was likely absorbed by Mn(IV) oxyhydroxides in oxic seawater during Mn(II) oxidation. Elevated Osinitial(i) for the Mn carbonate ores relative to that of the coeval global seawater value suggests that an increased riverine flux may have been a contributing factor leading to Mn mineralization.
The specific source of ancient sedimentary manganese (Mn) deposits is commonly complex. Here we use systematic major and trace element data with strontium (Sr) and neodymium (Nd) isotopic analyses of the Ortokarnash Mn(II) carbonate ores and associated carbonate rocks from the Upper Carboniferous Kalaatehe Formation (ca. 320 Ma) in order to constrain the Mn source. This formation consists of three members: the first member is a volcanic breccia limestone, the second member is a sandy limestone, and the third member is a black marlstone with the Mn(II) carbonate interlayers. Petrographic observations in combination with low Al2O3 (<3.0 wt%) and Hf (<0.40 ppm) contents and the lack of correlations between the Al2O3 and 87Sr/86Sr ratios as well as εNd(t) values demonstrate a negligible influence of terrigenous detrital contamination on both Sr and Nd isotopic compositions of the Mn(II) carbonate ores. The Sr isotopes of Mn(II) carbonate ores are most likely affected by post-depositional alteration, while Nd isotopes remain unaltered. The initial 87Sr/86Sr ratios in the associated carbonate rocks are likely the result of a mixture of the chemical components (i.e., seawater) and the Al-rich components (e.g., volcanoclastic material), while the detrital effects on Nd isotopes are negligible. In addition, both Sr and Nd isotopes in these non-mineralized wall rocks remained unchanged during post-depositional processes. The relatively low Th/Sc ratios and positive εNd(t) values suggest that the aluminosilicate fraction in the calcarenite and sandy limestone was mainly derived from the weathering of a depleted mafic source, representing the riverine input into the seawater. Given that the Mn(II) carbonate ores are characterized by negative εNd(t) values, these suggest that seafloor-vented hydrothermal fluids derived from interaction with the underlying old continental crust mainly contribute to the source of the Mn(II) carbonates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.