Long noncoding RNAs (lncRNAs) represent one of the largest classes of transcripts and are highly diverse in terms of characteristics and functions. Advances in high-throughput sequencing platforms have enabled the rapid discovery and identification of lncRNAs as key regulatory molecules involved in various cellular processes and their dysregulation in various human diseases. Here, we summarize the current knowledge of the functions and underlying mechanisms of lncRNA activity with a particular focus on cancer biology. We also discuss the potential of lncRNAs as diagnostic and therapeutic targets for clinical applications.
Emerging evidence highlights the relevance of extracellular vesicles (EVs) in modulating human diseases including but not limited to cancer, inflammation, and neurological disorders. EVs can be found in almost all types of human body fluids, suggesting that their trafficking may allow for their targeting to remote recipient cells. While molecular processes underlying EV biogenesis and secretion are increasingly elucidated, mechanisms governing EV transportation, target finding and binding, as well as uptake into recipient cells remain to be characterized. Understanding the specificity of EV transport and uptake is critical to facilitating the development of EVs as valuable diagnostics and therapeutics. In this mini review, we focus on EV uptake mechanisms and specificities, as well as their implications in human diseases.
Long noncoding RNAs (lncRNAs) constitute one of the largest classes of transcripts and have been widely implicated in various diseases such as cancer. Increasing evidence suggests that several lncRNAs are dysregulated and play critical roles in tumorigenesis. LncRNAs can be regulated by key oncogenes and tumor suppressors, adding complexity to the intricate crosstalk between protein coding genes and the noncoding transcriptome. In our study, we investigated the effect that dysregulation of the key tumor suppressor PTEN has on the noncoding transcriptome. We identified the lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) as a target of PTEN and find that this regulation is conserved in both human and mouse as well as with both chronic and acute PTEN dysregulation. We show that this regulation is at least in part microRNA (miRNA)-dependent, and characterize the miRNAs that may be mediating this crosstalk. In summary, we establish and characterize a non-canonical PTEN-microRNA-MALAT1 axis that regulates tumorigenesis and describe for the first time that the MALAT1 lncRNA possesses novel tumor suppressive properties in colon and breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.