In this paper, active disturbance rejection control method is used to implement the steering angle following control of steer-by-wire system for the simplification of controller designing. The dynamic model of steering performing system is established, and then a second order active disturbance rejection controller is designed to control the steering angle. On the electric vehicle with steer-by-wire system, the angle following test of steering performing system is carried out under the control of the second order active disturbance rejection controller. The results show that the designed active disturbance rejection controller can restrain the effect of system resistant force on the accuracy of angle following and meet the requirement of steer-by-wire system to the steering angle following function. At the same time, there isn’t necessary to get the accurate data of steering system and the design process of controller becomes simple with adopting active disturbance rejection control method.
In view of the existing complex analytic calculations of DFIG short-circuit current are hardly applied in engineering projects, a practical calculation of asymmetric short-circuit current of DFIG is proposed. According to the complex sequence and their Thevenin equivalent model of DFIG network, the composition of each sequence component of DFIG short-circuit current is analysed. Moreover, considering the low-voltage ride through strategy of DFIG, the negative sequence periodic components of short circuit current are well analysed during the crowbar activation and deactivation, and the formula of the negative sequence periodic components of short circuit current are derived. On the basis of positive and negative sequence open circuit voltage, calculating impedance and rotor current, the judgement of crowbar activation is established. The pre-calculated surfaces of negative sequence periodic components of short circuit current are proposed, and the procedure for calculating the asymmetric short-circuit current of DFIG is designed. Finally, the proposed method is verified by simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.