A new class of stable molecules, α-boryl aldehydes, has been prepared from oxiranyl N-methyliminodiacetyl boronates by a 1,2-boryl migration with concomitant epoxide scission. A range of boryl imines, alkenes, alcohols, acids, enol ethers, enamides, and other functionalized boronic acid derivatives that are difficult or impossible to prepare using established protocols can be accessed from α-boryl aldehydes. The chemoselective transformations of these building blocks, including the facile synthesis of functionalized unnatural amino acids from silyloxy and amido vinyl boronates, attest to the potential of α-boryl aldehydes in chemical synthesis.
Excellent tolerance: Stable acylboronates equipped with N-methyliminodiacetyl (MIDA) boryl groups ([B]) were prepared by using a sequence of oxidative manipulations at the boron-bound carbon center (green in scheme). Chemoselective transformations of these acylated organoboron building blocks yielded a range of multifunctionalized boron derivatives and supplied access to valuable borylated heterocycles (see scheme).
A mild and facile method for preparing highly functionalized pyrrolo[1,2-a]quinoxalines and other nitrogen-rich heterocycles, each containing a quinoxaline core or an analogue thereof, has been developed. The novel method features a visible-light-induced decarboxylative radical coupling of ortho-substituted arylisocyanides and radicals generated from phenyliodine(III) dicarboxylate reagents and exhibits excellent functional group compatibility. A wide range of quinoxaline heterocycles have been prepared. Finally, a telescoped preparation of these polycyclic compounds by integration of the in-line isocyanide formation and photochemical cyclization has been established in a three-step continuous-flow system.
We describe an efficient continuous flow synthesis of ketones from CO2 and organolithium or Grignard reagents that exhibits significant advantages over conventional batch conditions in suppressing undesired symmetric ketone and tertiary alcohol byproducts. We observed an unprecedented solvent-dependence of the organolithium reactivity, the key factor in governing selectivity during the flow process. A facile, telescoped three-step-one-flow process for the preparation of ketones in a modular fashion through the in-line generation of organometallic reagents is also established.
Researchers continue to develop chemoselective synthesis strategies with the goal of rapidly assembling complex molecules. As one appealing approach, chemists are searching for new building blocks that include multiple functional groups with orthogonal chemical reactivity. Amphoteric molecules that possess nucleophilic and electrophilic sites offer a versatile platform for the development of chemoselective transformations. As part of a program focused on new methods of synthesis, we have been developing this type of reagents. This Account highlights examples of amphoteric molecules developed by our lab since 2006. We have prepared and evaluated aziridine aldehydes, a class of stable unprotected α-amino aldehydes. Structurally, aziridine aldehydes include both a nucleophilic amine nitrogen and an electrophilic aldehyde carbon over the span of three atoms. Under ambient conditions, these compounds exist as homochiral dimers with an aziridine-fused five-membered cyclic hemiaminal structure. We have investigated chemoselective reactions of aziridine aldehydes that involve both the aziridine and aldehyde functionalities. These transformations have produced a variety of densely functionalized nitrogen-containing compounds, including amino aldehydes, 1,2-diamines, reduced hydantoins, C-vinyl or alkynyl aziridines, and macrocyclic peptides. We have also developed air- and moisture-stable α-boryl aldehydes, another class of molecules that are kinetically amphoteric. The α-boryl aldehydes contain a tetracoordinated N-methyliminodiacetyl (MIDA) boryl substituent, which stabilizes the α-metalloid carbonyl system and prevents isomerization to its O-bond enolate form. Primarily taking advantage of chemoselective transformations at the aldehyde functionality, these α-boryl aldehydes have allowed us to synthesize a series of new functionalized boron-containing compounds that are difficult or impossible to prepare using established protocols, such as α-borylcarboxylic acids, boryl alcohols, enol ethers, and enamides. Using α-borylcarboxylic acids as starting materials, we have also prepared several new amphoteric borylated reagents, such as α-boryl isocyanates, isocyanides, and acylboronates. These compounds are versatile building blocks in their own right, enabling the rapid synthesis of other boron-containing molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.