We present a design and the optimization of an irregular-shaped ring-pair magnet array that generates a 1D monotonic field pattern for 2D head imaging in a low-field portable MRI system. The magnet rings are discretized into fan-shaped ring segments with varying outer diameters for the design and optimization. Besides, the inner radii of ring-pairs are tapered from outside in to provide the controlled field inhomogeneity. Genetic algorithm (GA) was used, and a current model for a fan-shaped ring segment was derived to have a fast forward calculation in the optimization. A monotonic field pattern is successfully obtained along the x−direction in a cylindrical field of view (FoV), with a relatively strong magnetic field (132.98 mT) and the homogeneity of 151840 ppm. The proposed array was further evaluated by applying its field as a spatial encoding magnetic field (SEM) for imaging numerically. Due to the field monotonicity, the reconstructed image by applying the fields of the proposed array shows clearer features (a higher structural similarity index) with a reduced error rate compared to that using a sparse dipolar Halbach array. The proposed magnet array is a promising alternative to supply SEM for imaging in a permanent-magnet-based low-field portable MRI system.
Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on nonlinear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable lowcost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.