Colochirus robustus, a species of sea cucumber, has long been used in East and Southeast Asia as nutritious food as well as for certain medicinal purpose. Studies have shown a number of biological functions associated with consumption of sea cucumber, many of which are attributed to its major component, sea cucumber peptides (SCP). However, how SCP impacts immune system, which is critical for host defense, has not been defined. To address this issue, in the present study, we conducted comprehensive analysis of immune function after oral administration of SCP (0, 25, 50 and 75 mg/kg body weigh) for eight weeks in C57BL/6 mice. We found that SCP treatment significantly enhanced lymphocyte proliferation, serum albumin (ALB) levels, and the natural killer (NK) cell activity. Moreover, SCP promoted functions of helper T cells (Th) as indicated by increased production of Th1 type cytokines of Interleukin (IL)-1β, IL-2, Interferon (IFN)-γ and TNF-α and Th2 type cytokines (IL-4, IL-6 and IL-10). To determine the effective components, SCP was hydrolyzed into 16 types of constituent amino acids in simulated gastrointestinal digestion and these hydrolytic amino acids (HAA) were used for the mechanistic studies in the in vitro models. Results showed that HAA enhanced lymphocyte proliferation and production of IL-2, IL-10 and IFN-γ. Furthermore, CD3ζ (CD3ζ) and ζ-chain-associated protein kinase 70 (ZAP-70), the signaling molecules essential for activating T lymphocytes, were significantly up-regulated after HAA treatment. In summary, our results suggest that SCP is effective in enhancing immune function by activating T cells via impacting CD3ζ-and ZAP-70-mediated signaling pathway.
Ytterbium (Yb), a widely used rare earth element, is treated as highly toxic to human being and adverseness to plant. Mitochondria play a significant role in plant growth and development, and are proposed as a potential target for ytterbium toxicity. In this paper, the biological effect of Yb(3+) on isolated rice mitochondria was investigated. We found that Yb(3+) with high concentrations (200 ~ 600 μM) not only induced mitochondrial membrane permeability transition (mtMPT), but also disturbed the mitochondrial ultrastructure. Moreover, Yb(3+) caused the respiratory chain damage, ROS formation, membrane potential decrease, and mitochondrial complex II activity reverse. The results above suggested that Yb(3+) with high concentrations could induce mitochondrial membrane dysfunction. These findings will support some valuable information to the safe application of Yb-based agents.
The effects of lanthanum on heat production of mitochondria isolated from Wistar rat liver were investigated with microcalorimetry; simultaneously, the effects on mitochondrial swelling and membrane potential (Δψ) were determined by spectroscopic methods. La(3+) showed only inhibitory action on mitochondrial energy turnover with IC50 being 55.8 μmol L(-1). In the spectroscopic experiments, La(3+), like Ca(2+), induced rat liver mitochondrial swelling and decreased membrane potential (Δψ), which was inhibited by the specific permeability transition inhibitor, cyclosporine A (CsA). The induction ability of La(3+) was stronger than that of Ca(2+). These results demonstrated that La(3+) had some biotoxicity effect on mitochondria; the effects of La(3+) and Ca(2+) on rat liver mitochondrial membrane permeability transition (MPT) are different, and La represents toxic action rather than Ca analogy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.