Current pharmaceutical research and development (R&D) is a high-risk investment which is usually faced with some unexpected even disastrous failures in different stages of drug discovery. One main reason for R&D failures is the efficacy and safety deficiencies which are related largely to absorption, distribution, metabolism and excretion (ADME) properties and various toxicities (T). Therefore, rapid ADMET evaluation is urgently needed to minimize failures in the drug discovery process. Here, we developed a web-based platform called ADMETlab for systematic ADMET evaluation of chemicals based on a comprehensively collected ADMET database consisting of 288,967 entries. Four function modules in the platform enable users to conveniently perform six types of drug-likeness analysis (five rules and one prediction model), 31 ADMET endpoints prediction (basic property: 3, absorption: 6, distribution: 3, metabolism: 10, elimination: 2, toxicity: 7), systematic evaluation and database/similarity searching. We believe that this web platform will hopefully facilitate the drug discovery process by enabling early drug-likeness evaluation, rapid ADMET virtual screening or filtering and prioritization of chemical structures. The ADMETlab web platform is designed based on the Django framework in Python, and is freely accessible at http://admet.scbdd.com/.Electronic supplementary materialThe online version of this article (10.1186/s13321-018-0283-x) contains supplementary material, which is available to authorized users.
Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .
The Caco-2 cell monolayer model is a popular surrogate in predicting the in vitro human intestinal permeability of a drug due to its morphological and functional similarity with human enterocytes. A quantitative structure-property relationship (QSPR) study was carried out to predict Caco-2 cell permeability of a large data set consisting of 1272 compounds. Four different methods including multivariate linear regression (MLR), partial least-squares (PLS), support vector machine (SVM) regression and Boosting were employed to build prediction models with 30 molecular descriptors selected by nondominated sorting genetic algorithm-II (NSGA-II). The best Boosting model was obtained finally with R(2) = 0.97, RMSEF = 0.12, Q(2) = 0.83, RMSECV = 0.31 for the training set and RT(2) = 0.81, RMSET = 0.31 for the test set. A series of validation methods were used to assess the robustness and predictive ability of our model according to the OECD principles and then define its applicability domain. Compared with the reported QSAR/QSPR models about Caco-2 cell permeability, our model exhibits certain advantage in database size and prediction accuracy to some extent. Finally, we found that the polar volume, the hydrogen bond donor, the surface area and some other descriptors can influence the Caco-2 permeability to some extent. These results suggest that the proposed model is a good tool for predicting the permeability of drug candidates and to perform virtual screening in the early stage of drug development.
Background With the increasing development of biotechnology and informatics technology, publicly available data in chemistry and biology are undergoing explosive growth. Such wealthy information in these data needs to be extracted and transformed to useful knowledge by various data mining methods. Considering the amazing rate at which data are accumulated in chemistry and biology fields, new tools that process and interpret large and complex interaction data are increasingly important. So far, there are no suitable toolkits that can effectively link the chemical and biological space in view of molecular representation. To further explore these complex data, an integrated toolkit for various molecular representation is urgently needed which could be easily integrated with data mining algorithms to start a full data analysis pipeline.ResultsHerein, the python library PyBioMed is presented, which comprises functionalities for online download for various molecular objects by providing different IDs, the pretreatment of molecular structures, the computation of various molecular descriptors for chemicals, proteins, DNAs and their interactions. PyBioMed is a feature-rich and highly customized python library used for the characterization of various complex chemical and biological molecules and interaction samples. The current version of PyBioMed could calculate 775 chemical descriptors and 19 kinds of chemical fingerprints, 9920 protein descriptors based on protein sequences, more than 6000 DNA descriptors from nucleotide sequences, and interaction descriptors from pairwise samples using three different combining strategies. Several examples and five real-life applications were provided to clearly guide the users how to use PyBioMed as an integral part of data analysis projects. By using PyBioMed, users are able to start a full pipelining from getting molecular data, pretreating molecules, molecular representation to constructing machine learning models conveniently.ConclusionPyBioMed provides various user-friendly and highly customized APIs to calculate various features of biological molecules and complex interaction samples conveniently, which aims at building integrated analysis pipelines from data acquisition, data checking, and descriptor calculation to modeling. PyBioMed is freely available at http://projects.scbdd.com/pybiomed.html.
With the increase of complexity and risk in drug discovery processes, human intestinal absorption (HIA) prediction has become more and more important. Up to now, some predictive models have been constructed to estimate HIA of new drug-like compounds with acceptable accuracies, but there are still some issues to be explored including the limited and unbalanced HIA data, the performance of different types of descriptors and the application domain issues of published models. To address these problems, in this study, we collected a relatively large dataset consisting of 970 compounds, and 9 different types of descriptors were calculated for further modeling. For all the modeling processes, a parameter named samplesize in the random forest (RF) method was applied to balance the dataset. And then, classification models were established based on different training sets and different combinations of descriptors. published models, our model exhibits some advantages in data size, model accuracy and model practicability to some extent. This structure-activity relationship model is necessary and useful for HIA prediction and it could be a convenient tool for virtual screening in the early stage of drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.